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Abstract

This paper examines the role of unexplained

systematic variation on the reproducibility of wind

tunnel test results. Sample means and variances

estimated in the presence of systematic variations are

shown to be susceptible to bias errors that are generally

non-reproducible functions of those variations. Unless

certain precautions are taken to defend against the

effects of systematic variation, it is shown that

experimental results can be difficult to duplicate and of

dubious value for predicting system response with the

highest precision or accuracy that could otherwise be
achieved.

Results are reported from an experiment designed

to estimate how frequently systematic variations are in

play in a representative wind tunnel experiment. These

results suggest that significant systematic variation

occurs frequently enough to cast doubts on the common

assumption that sample observations can be reliably

assumed to be independent. The consequences of

ignoring correlation among observations induced by

systematic variation are considered in some detail.

Experimental tactics are described that defend

against systematic variation. The effectiveness of these

tactics is illustrated through computational experiments

and real wind tunnel experimental results. Some

tutorial information describes how to analyze

experimental results that have been obtained using such

quality assurance tactics.

Nomenclature

bi bias error in the i th observation

of a sample

df degrees of freedom

ei random error in the ith observation

of a sample

H0 the null hypothesis

HA the alternative hypothesis

n the sample size
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Alternative

Hypothesis

CCD

dwell time

MDOE

Null

Hypothesis

OFAT

population

residual

sample

sample mean

the size of the population,

assumed "large"

the sample standard deviation

the sample variance

the i th independent variable,

coded units

the i th observation in a sample

the sample mean

angle of attack, Type I inference

error probability

angle of sideslip, Type II inference

error probability, net bias error due to

systematic variation (equivalent to a

rectification error)

the population mean

the lag-m autocorrelation coefficient

the population standard deviation

the population variance

the i th independent variable,

physical units

usually an assertion that changes

in one or more variables will

produce a significant change in

system response.

Central Composite

(Box-Wilson) Design

time required to acquire a sample

of data

Modem Design of Experiments

usually an assertion that changes

in one or more variables will not

produce a significant change in

system response.

One Factor At a Time

a large set of measurements from

which a sample can be imagined to

come

difference between an observed

value and some reference, such as a

sample mean or a model prediction.

a finite subset of available

measurements from a population

the average value of all the

measurements in a sample
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samplesize

significance

significant

TypeI error

TypeII error

thenumberofmeasurementsin
asample.
theprobabilityofaninferenceerror
duetochancevariationsinthedata
largeenoughtobedetectedwitha
degreeofconfidencesatisfying
specifiedrisktolerancelevels.
inferenceerrorcommittedwhenthe
nullhypothesisiserroneously
rejected.
inferenceerrorcommittedwhenthe
alternativehypothesisiserroneously
rejected.

Introduction

A key quality control strategy in conventional wind

tunnel research is to hold constant all independent

variables except for one that is selected for current

study. Such variables as Mach number and Reynolds

number might be held constant while the angle of attack

is systematically varied to quantify the effect of such

changes on forces and moments. Similar angle of

attack sweeps are executed at other combinations of

Mach number and Reynolds number, changed

systematically between each sweep. This practice of

holding all other variables constant while changing only

one factor at a time is widely assumed to be a necessary

condition for correctly associating response changes

(forces, moments, pressures, etc.) with the independent

variable changes that cause them. The term "one factor

at a time" (OFAT) is used to describe this popular

experimental method.

Experienced OFAT practitioners recognize that

chance variations in the data inevitably occur in any

wind tunnel test, but the usual assumption is that these

fluctuations occur about a mean response that does not

change significantly unless the independent variables of

the test are changed. Absent this assumption, true

cause and effect relationships between independent and

response variables are difficult to reconcile using

conventional OFAT methods. Furthermore, it is not

uncommon in ground testing to assign certain

convenient attributes to the unexplained variance that

are often not entirely justifiable. For example, if all

unexplained variance consists of random, independent

variations about sample means that do not change over

time, the system can be said to be in a state of

"statistical control". If the system is in such a state,

arbitrarily small variances in the distribution of sample

means can be achieved for sufficiently large samples

sizes, for example. Also, certain properties can be

assigned to the distribution of experimental errors than

ensure that statistics such as means and standard

deviations that are based on finite data samples are

reliably unbiased estimators of the corresponding

parameters of the general population of interest. These

are necessary conditions for "getting the right answer"

(within a constant if there are bias errors) when

resource constraints dictate - as they generally do - that

we can only observe a subset of the entire population of

(theoretically) possible observations.

A clear understanding of the necessity for

independence in measurements may elude those

experimentalists who are not particularly well grounded

in statistical theory, and who may therefore tend to

overlook such details. OFAT practitioners who

understand why the prospects for reliable inference

without independent experimental errors are so bleak,

have a strong tendency to rely on assumptions (not to

say hopes, or prayers) that the errors in a sequence of

experimental data points are in fact statistically

independent, whether they are or not. The following

quote from Box, Hunter, and Hunter's seminal text on

experiment design 1 provides an excellent description of

this tendency: "Statisticians frequently make the

assumption of independence at the beginning of their

writings and rest heavily on it thereafter, making no

attempt to justify the assumption, even though it might

have been thought that 'a decent respect to the opinions

of mankind requires that they should declare the causes

which impel them' to do so. The mere declaration of

independence, of course, does not guarantee its
existence. "

This paper reports the results of a recent

experiment to quantify the frequency with which

common assumptions of statistical independence are

valid in a representative wind tunnel test. That is, we

sought to determine how often the ubiquitous

"declaration of independence" was violated in a typical

ground-testing scenario. We begin by examining some

general consequences of an unwarranted assumption of

statistical independence, and consider the specific

impact of such an assumption on the proper estimation

of one standard ground-testing data structure, the

common pitch polar.

In subsequent sections we consider plausible

reasons that it may not be prudent to assume statistical

independence in real world ground testing. Our results

support the conclusions of standard references on

experiment design TM, which recommend against relying

upon statistical control assumptions. Instead, we follow

the lead of the statistical experiment design community

in counseling against OFAT techniques generally, and

encourage the use of data quality assurance tactics

during the execution of the experiment that can lead to

reliable inferences whether the system is in a reliable

state of statistical control or not. Stated slightly

differently, our results support the view that while

statistical control is a sufficient condition to ensure
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againstcommoncausesof improperexperimental
inference,it isnotanecessarycondition.

The Role of Statistical Independence

Statistical independence is vaguely perceived in the

general ground testing community (when it is perceived

at all) as a "good" thing, but few in our community

have a visceral understanding of what it actually means

to experimental research. Its importance is rarely

elevated to a level for which the researcher feels

compelled to exert himself excessively to achieve it.

As noted in the introduction, the general tendency is to

simply assume that it exists, or more commonly, to

assume that it doesn't much matter one way or the other

outside the ivy towers of academe.

In this section we will attempt to describe the

concept of statistical independence in terms that are

meaningful to the practicing experimentalist. We will

also try to make a convincing case that statistical

independence is at once crucial to the success of an

experiment, and also a property that cannot be reliably

assumed in real data without some effort on the part of
the researcher to secure it.

The Random Samplin_ Hypothesis

The reality of unexplained variance in

experimental data forces us to describe the systems we

study in terms of random variables that can assume

different values, governed by a probability distribution

that defines how likely it is that a given variable will

assume a particular value. We can imagine a set of N

measurements of such a random variable. Theoretically

we can suppose that N is infinite, but for our purposes it

is sufficient to assume that N is large enough to have

captured the random variable at multiple instances of

every level for which there is a significant probability

that it will be observed. We use the term "population"

to describe this collection of essentially every possible

value of the random variable, with all values

represented in proportion to the probability that they

will actually be observed. Clearly, we could say a great

deal about a random variable, and say it authoritatively,

if we had such a comprehensive data set to examine.

Specifically, we could infer such parameters of the

population as its mean and variance with very little risk

of an inference error.

Unfortunately, resource constraints generally

compel us to deal with only a subset, or sample, of the

N points that comprise the entire population. The

essence of an experiment is to make reliable inferences

about the parameters of the general population based on

statistics from a very much smaller sample. We

therefore compute such statistics as the mean and

variance of a sample, and from those we attempt to
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Figure 1. Points within shorter intervals can be more

alike than points acquired over longer intervals.

Figure from reference 5.

estimate the corresponding parameters of the general

population.

Any data set we acquire will be some sample of the

population. However, to adequately represent the

population from which the sample is drawn, it is crucial

that the sample consist of measurements drawn at

random from the entire population. That is, we seek a

sample constructed in such a way that every condition

under which a population member can be generated has

an equal chance of occurring in the sample.

Researchers generally assume that their data samples

are representative of the general population about

which they seek to make inferences. We call this

ubiquitously assumed condition the random sampling

hypothesis, and consider now some reasons to doubt

that it applies in every real experimental situation.

We will show presently that the risk of making an

improper inference about the population from a finite

sample of data can be substantially greater if the

random sampling hypothesis does not apply.

Unfortunately, it often does not apply when real data

are acquired with conventional OFAT ground-test

measurement techniques that rely upon sequential

independent-variable level settings to maximize data

acquisition rate. The reason is that when data are

acquired in a sequence, those points taken within a

relatively short time interval tend to be more alike than

those taken with longer intervening time intervals.

Figure 1, taken from reference 5, was used in that

reference to illustrate this general tendency in ground

testing data. The authors distinguish between what they

describe as "within-group" and "between-group"

variance levels, noting the consistent tendency for

between-group variance associated with longer time

intervals to dominate the within-group variance

associated with shorter time periods.

This can often be plausibly attributed to

disturbances that tend to persist over time. For
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1.317 1.319 1.320 1.321 1.322 1.3231.318

Lift Coefficient

Figure 2. Distribution of sample means for 10

observations of lift coefficient, g=1.320, _=0.002.

We will exploit this linkage between run order and

the random sampling hypothesis later. For now, suffice

it to say that some important statistical procedures

depend upon the random sampling hypothesis for their

validity, and the presence of systematic variations in the

data can seriously increase the risk of inference error

when conclusions are based on an erroneous

assumption of independence. It is also important to

note that unless our sample sizes are relatively large (no

fewer than about 50 pointsl), autocorrelation

computations and other direct measures of statistical

dependence can be unreliable. Autocorrelation in

samples no larger than a common pitch polar can go

virtually undetected, and yet be sufficient to invalidate

conclusions based on an assumption of independence,

as we shall soon see.

example, the calibration coefficients of the force

balance in a wind tunnel test can change slightly with

temperature. Frictional heating as the test proceeds

may therefore cause drift in the balance output or in

other instruments. Subtle deviations in flow angularity

can cause systematic variations in the angle of attack to

be superimposed upon those generated by intentionally

changing the pitch angle of the model. Thermal

expansion can alter the tunnel geometry somewhat, and

induce systematic variations in the wall interference

effects and other changes. These are just a few of the

unknown (and unknowable) sources of unexplained

variation in a wind tunnel test that can persist over

some extended period of time.

If such persistent disturbances are in play during

the period in which a small sample of data is acquired,
then deviations of the individual measurements from

the sample mean or some other reference (such as the

true but unknown response function relating the

dependent and independent variables) will not be

random. For example, if such systematic variations

cause the ith data point to be biased somewhat high,

then the (i+1) _t point will tend to be biased high also if

it is acquired only a short time after the i th point. This

means that the error in the (i+1) _t point is not just as

likely to be negative as positive. Rather, the probability

distribution of (i+1) _t observation is affected by the
level of the ith observation. The errors are not

independent; they exhibit some degree of

autocorrelation. That is, the observations are

statistically dependent, because the error distribution

for a given observation depends on the order in which

the data points were acquired. The relationship

between the errors in data points "A" and "B" is not a

matter of simple random chance. It depends largely on

which one occurs first in the data acquisition sequence.

The Reference Distribution

In this section we outline an objective procedure

for making reliable inferences in scientific experiments

under the random sampling hypothesis. We will later

consider how this process is impacted when the random

sampling hypothesis does not apply, and we will

describe some practical defense tactics to ensure that

the random sampling hypothesis applies even when

systematic variations cannot be neglected.

Formal procedures have evolved for making
scientific inferences that date from their introduction

early in the 20 th century by Ronald Fisher and his

associates 6. While the details obviously depend on the

specific circumstances of the experiment, the general

procedure is the same whether the study is in

experimental aeronautics or in any other scientific or

research engineering field. It begins by stipulating

some state of nature and developing the distribution of

sample means that would be expected if nature were in

fact in that state. For example, if we wish to infer

whether or not a proposed wing enhancement improves

the coefficient of lift at cruise for a particular aircraft

design, we might consider a sample of differential lift

measurements involving the new and old wing, and ask

how the mean of such a sample would be distributed if

there was no change in lift. That is, we imagine many

samples of differential lift data from these same two

wings, with sample means that differ somewhat due to

ordinary chance variations in the data. We ask how the

probability distribution for the difference in those

sample means would look if in fact the new wing

produced no additional lift. We refer to the

presumption of such a no-change state as a "null

hypothesis", and use the symbol H0 to represent it

succinctly. There is always a corresponding

"alternative hypothesis", HA, which in this case would

be true if the proposed wing change actually did

generate additional lift. The random variable of interest

in this example is the change in lift associated with the
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newwing.Thedistributionofsucharandomvariable
thatwewouldexpectunder the null hypothesis is

known as the reference distribution.

Figure 2 represents a reference distribution for a

special case to illustrate the concept. In this example,

we assume that the lift coefficient of the old wing under

cruise conditions is known to be 1.320, and the standard

deviation of individual lift coefficient measurements for

this model in this facility is also known, with a value of

0.002. (When we assert that the mean and standard

deviation is "known" for the old wing, we simply mean

that our estimates are based on a volume of replicated

measurements that is so large as to be effectively

"infinite", so that the uncertainty in those estimates is

close enough to zero to make no practical difference.)

To defend against systematic error that may be present,

it is necessary to compare measurements from the new

wing with measurements from the old wing, even if we

know the old wing's lift. For the present, however, we

assume that all unexplained variance is random, and

because the lift of the old wing is known, we will only
concern ourselves with measurements of the new

wing's lift.

Under the null hypothesis, we would expect the

distribution of sample means for the new wing to be the

same as for the old wing; namely, 1.320. We know the

standard deviation in the distribution of individual

observations is 0.002, but what about the standard

deviation in the distribution of sample means? The

formula for the variance of a distribution of sample

means is well known for the case in which all

observations in the sample are independent, but it can

be derived easily. Because this derivation is instructive

for more complex cases to follow (where statistical

independence cannot be assumed), we will outline it

briefly here. We start with a general formula for error

propagation developed in standard references 7'8 and

reproduced here.

+2 Pxx O-x O-x
_...d _...d i 2 i 2

i=1j=.l/°_c_)_°xJ)

(1)

Equation 1 is useful in cases where we know the

variance of the independent variables upon which some

variable of interest depends, but we do not know the

variance of the variable that interests us. For example,

we may know the variance in measurements of the

length and width of some rectangular area, but what we

really want to know is the variance in an estimate of the

area that is based on those uncertain length and width

measurements.

Equation 1 describes the variance in a general

function ofk variables: y f(xl, x2 ..... x_). It depends

onyx,the standard deviation of the independent

variables xi, and on Pxsj, the coefficient of correlation

between the i th andf h independent variable.

If there is no correlation among any of the

variables, the double summation term on the right of

equation 1 vanishes because in that case Pxsj = 0. We

are left with

+(0,? +...+(0,?
(2)

Consider now an n-point sample mean, which can

be represented as a function of n variables as follows:

_= Yl +Y2 +'"+Y_
n

=(llYl +(llY2 +'"+(llYn

(3)

From equation 3 we see that the derivative

of_ with respect to yi is 1/n for all i. If we make the

reasonable assumption that all observations in the

sample have the same variance, then we can drop the

distinguishing subscripts in equation 2 and call this per-

point variance simply _2. The result of then applying

(2) to (3) is that the formula for the variance in sample

means is just the sum of n identical terms, each then

equal to _2/n2, and we have:

o-_ = n --5- = -- (4)

This well-known result states that the variance in

the distribution of sample means decreases with the size

of the sample. Among other things, it enables us to

define sample sizes that drive the uncertainty in sample
means to whatever level is consistent with our tolerance

for inference error risk 9 (although "zero" uncertainty

cannot be achieved with any finite volume of data).

However, the validity of equation 4 depends on

statistical independence among observations in the

sample, so that P_s_ = 0. We will later examine how

the distribution of sample means changes when the

observations are not independent, and we will also
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considertheimpactthishasontheinferenceerrorrisk
weassumewhenwemakeaninferenceinthepresence
ofcorrelationwhileassumingstatisticalindependence.

Wereturnnowtoourwinglift example,inwhich
weaskedhowadistributionof somelargenumberof
samplemeanswouldlookif eachwasthemeanofn lift

coefficient measurements on the new wing, acquired

under the null hypothesis (no change in lift from the old

wing) and under conditions for which all measurements

in the sample are statistically independent. From the

null hypothesis we expect the mean of this distribution

to be the known lift coefficient of the old wing, which

we have said is 1.320. Let us assume that our sample
size is 10. We have also said that the standard

deviation in individual observations of the lift

coefficient is known in this example to be 0.002. Then

from equation 4 the standard deviation in the

distribution of sample means is expected to be

0.002/1_-=6.32x10 -4.

The Central Limit Theorem assures us that the

distribution of a random variable that represents the

sum of other random variables is approximately normal

(Gaussian) if the summed variables are of comparable

magnitude and satisfy other mild constraints,

independent of the probability distribution of the

populations from which they were drawn. We therefore

adopt as our reference a normal distribution with a
mean of 1.320 and a standard deviation of 6.32 x 10 -4.

This is the distribution illustrated in figure 2.
We use such a reference distribution to make an

inference in the following way. We know that under

the null hypothesis, the population mean in this case

would be 1.320. However, experimental error virtually

guarantees that a 10-point sample mean will not be

exactly 1.320 except by pure coincidence, even if the

null hypothesis is true. Nonetheless, a casual inspection

of figure 2 suggests that if H0 is true, while the sample

mean may not be exactly 1.320, there is an

overwhelming probability that it will lie somewhere

between 1.318 and 1.322. If our specific 10-point

sample lies outside this range, we have good reason to

reject the null hypothesis.

The dashed line in figure 2 marks a criterion by

which we can objectively decide whether or not to

reject the null hypothesis. There is associated with this

criterion a controlled probability (controlled by the

selection of the criterion level) of making an inference

error that is defined by the area under the reference

distribution to the right of this line. In this illustration a

criterion of 1.3212 makes this area 0.05. We will

acquire a 10-point sample and compute its mean,

accepting or rejecting the null hypothesis depending on

whether it is less than or greater than this criterion.

Because the sample mean is a random variable,

there is some probability that the mean of any one

10-point sample will lie to the right of the criterion even

if the null hypothesis is true. In such a case we would

erroneously reject the null hypothesis, concluding that

the new wing was better than the old wing even though

it was not. But because the criterion was selected to

ensure that the area under the reference probability

distribution to the right of the criterion is only 0.05, we

know that assuming a valid reference distribution there

is only a 5% chance that we will erroneously reject the

null hypothesis due to ordinary random experimental

error. We can move the criterion to the right as needed

to drive the inference error probability lower than this if

we require greater than 95% confidence in an inference

that the new wing is better than the old. (We might

require greater confidence if there were large tooling

costs associated with a decision to take the new wing

design to production, for example.)

A complete description of this problem is more

complicated than the one we have illustrated because in

selecting a criterion (and also in defining the optimum

sample size as it happens), we must not only account

for the possibility of erroneously rejecting the null

hypothesis, but also the possibility of erroneously

rejecting the alternative hypothesis should our specific

sample mean lie to the left of the criterion. This

extension is beyond the scope of the present paper but it
is described in standard references 3'4 and has also been

applied to the general problem of scaling data volume

requirements in ground testing 9. For the purposes of

this paper, it is simply necessary to note that the

extended problem depends all the more on a reliable

reference distribution. This adds to the pressure to

ensure that the random sampling hypothesis is satisfied,
because our estimate of the standard deviation in the

reference distribution depends upon it. This, in turn,

directly impacts the risk of erroneously rejecting H0 or

HA.

Impact of Correlation

The key to an objective inference is a reference

distribution that reliably describes some hypothesized

state of nature. Unfortunately, when the observations in

a sample of data are correlated, even mildly, the

corresponding reference distribution can be different

enough from the one we construct under the assumption

of statistical independence to substantially inflate the

inference error probability. We will demonstrate this

for the case of our wing lift example in a moment, but
first let us examine how correlation can affect the

standard deviation in a distribution of sample means.

6
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Distribution of Sample Means with Correlated
Observations

Consider a sample of data in which the standard

deviation of the distribution of individual observations

is the same for each point, _, just as in the previous

wing comparison example. However, unlike the

previous example in which we assumed no correlation,

assume in this case that each point is correlated with the

one acquired immediately before. We will further

assume that correlation with all other points is zero.

(The distance between points in a sequence is called the

"lag", and these conditions describe a state in which

only the "lag-l" or first-order autocorrelation is non-

zero.)
Consider now the variance of a function

n_ = Yl + Y2 +"" + Yn, where _ is the sample mean and

the )2, are the n individual observations of the sample.

We can use equation 1 to compute this variance, where

for a lag- 1 autocorrelation we have:

012 : 023 : "'" Dn 1,n : D1,

where the subscript "1" indicates that the

autocorrelation is lag-1. With all the partial derivatives

equal to 1 for this case, equation 1 reduces to:

n nl

2

0-nT :ZO'2+2ZPIO'2

i=1 i=1

= no- 2 + 2(n- 1)/)1 °-2

= 0-a[n + 2(n - 1)Pl]

(5)

The second summation goes to n-1 because for n

observations in a sample there are n-1 adjacent (and in

this case, correlated) pairs.

Equation 5 gives us the variance for n_, but we are

interested in the variance for _. We can again apply the

general propagation formula of equation 1 by

representing _ as a function of a single variable, "n_",

for which we know the variance from equation 5:

/£
: ILl 2 {0-2 [/_/-I- 2(n -- l)Pl ]}

\nj

(6)

1.317 1.319 1.320 1.321 1.322 1.323

Lift Coefficient

E--p:0--o:041

/Z

1.318

Figure 3. Distribution of 10-point sample means,

g=1.320, _=0.002, with and without lag-1

autocorrelation of 0.4.

The term outside the square brackets on the right

side of equation 7 is the familiar variance for the

distribution of sample means when all observations are

statistically independent, as derived in equation 4. The

term inside the square brackets is a measure of how the

variance is changed when the observations are not

independent. It depends on the autocorrelation

coefficient as expected, and it also depends on the

volume of data in the sample. This should not be

unexpected either, since the more points there are in the

sample, the more correlated pairs there will be, and thus

the greater will be the deviation from the no-correlation

case.

The lag- 1 autocorrelation coefficient is bounded by

+0.5, so the bracketed term in equation 7 can range

from (2n - 1)In on the high side to 1In on the low. This

means that even a relatively mild lag-1 case of

autocorrelation can cause the variance to change by a

factor of (2n- 1)/n+(1/n)= 2n-1, depending on details

of the correlation. This range is substantial, even for

small samples. It is 5-to-1 for as few as three points in

the sample, and is about two orders of magnitude for

samples of around 50 points. The larger the correlated

sample, the greater the ambiguity that is introduced by

correlation. The situation is exacerbated even further,

of course, for common situations in which the

correlation is more severe than the first-order (lag-l)

case we have considered here.

After rearranging terms, this becomes:

0-_ : _I1 -t- 2(_P11

(7)

Impact of Correlation on Inference Error Risk
Let us now return to our wing lift example.

Equation 7 describes the variance of the actual

distribution of sample means that we need to use as a

reference distribution when there is first-order

autocorrelation. Let us assume a lag-1 autocorrelation

coefficient of 0.4. The sample size is assumed to be the

7
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sameasintheuncorrelatedcase:n=10, and likewise the

standard deviation of individual measurements is still

0.002. Inserting these values into equation 7 yields a

value for the standard deviation in the distribution of

sample means for the correlated case of 8.29x10 -4,

which is over 30% greater than the uncorrelated case.

This means that the distribution that actually

corresponds to our null hypothesis of no increase in lift
coefficient will be wider than the distribution we would

assume if we thought all the observations were

statistically independent (and thus used equation 4 to

compute the variance of the distribution instead of

equation 7).

The greater variance in the true distribution means

that the area under the distribution to the right of the

criterion we would set under the random sampling

hypothesis is now larger. Figure 3 illustrates this.

Recall that this area corresponds to the probability of

erroneously rejecting the null hypothesis due to

experimental error. In the uncorrelated case it was

selected by design to be 0.05, but if correlation inflates

the variance of the distribution of sample means as

figure 3 illustrates, this probability increases to 0.098.

In other words, the introduction of a rather mild degree

of correlation has essentially doubled the probability of

an inference error. It would now be twice as likely as

before to take an ineffective wing design to production,

for example, incurring the tooling costs and other

expenses associated with such an undertaking with no

prospects of producing a wing whose performance

could justify these costs.

Impact of Correlation on the Quality of Sample

Statistics as Population Parameter Estimators

Valid mean and variance numbers can be computed

for any sample of data because they are simply

determined from mechanical mathematical operations,

but there is very little else we can say about those

results if they apply only to an isolated sample of data.

The underlying assumption in experimental research is

that the sample statistics tell us something useful about

the broader population from which the sample was

drawn. We count on the true expectation value of the

sample mean,_,to be //, the population mean, and

likewise we assume that the expectation value of the

sample variance, s 2, will be the population variance, o:.

Instead, in an appendix to this paper we see that when

the random sampling hypothesis does not hold, the

expectation values of the sample mean and variance can

be quite different. Equations for the sample mean and

variance derived in the appendix are reproduced here
for convenience:

E{y} (8)

(9)

The quantities ¢t and o-are the true population

mean and standard deviation, respectively, fl

and o-} are, respectively, the mean (generally non-zero)

deviation and the mean square deviation of the

systematic errors relative to the true population mean.

The function f(p) is a generic representation of the

change in population variance attributable to

correlation, p, among the observations in the sample, as

we have already considered for a special case of

autocorrelation. This is the general representation for

which the specific instance was derived in equation 7.

Finally, Pe,/_ is a coefficient describing any correlation

that might exist between the random and systematic

components of the unexplained variance. For example,

if thermal effects caused a systematic drift in the
instrumentation and a simultaneous increase in the

random scatter of the data, this correlation coefficient

would be non-zero.

Equation 8 shows that statistical dependence

results in a bias shift in the estimation of the population

mean. This is attributable to the fact that at any point in

time during which the sample is being acquired, the

ordinary random variations that occur in any data set

are distributed not about the true population mean, but

about a value that is offset from the true mean by

whatever the systematic error is at that moment. In

other words, the systematic error behaves as a time-

varying bias error, which is precisely what it is. The

quantity fl in equation 8 is simply the average value of
this bias error over the time interval in which the

sample was acquired.

The impact of statistical dependence on variance

estimates is more complicated, but two cases in the

limit of large n are interesting. Assuming f(p) is

bounded for large n as it was in the special case of lag- 1

autocorrelation that we developed earlier (see equation

7), for large n equation 9 reduces to:

E{s2}= o-2 + o-_ + 2pe,po'o" p (10)

If the random and systematic components of the

unexplained variance are uncorrelated so that Pe,b = 0

(which we would expect in general), this further
reduces to:
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That is, systematicvariationcan causethe
expectationvalueofthesamplevariancetobeabiased
estimateofthepopulationvariance.Thesebiaserrors,
forboththesamplemeanandthesamplevariance,are
functionsoftransientsystematicvariations.Thisisa
potentialcauseof irreproducibilityinwindtunneltest
results.

Considernowthecasein whichtherandomand
systematicerrorsare perfectlycorrelated(either
positivelyornegatively).In thatcase,Pe,b = 4-1, and

equation 10 reduces to:

(12)

This case has little practical interest because the

concept of perfect correlation between random and

systematic error is invalid, but it represents a reassuring

limiting case that helps validate the derivation. If there

was perfect correlation, then the systematic errors

would not be systematic at all, but would simply

represent an increase in the magnitude of random error

for positive correlation or a decrease for negative

correlation. The fact that equation 12 says precisely

that provides some additional confidence in the

analysis.

Equations 8 and 11 tell us that the addition of

systematic error biases our estimates of both the

population mean and the population variance. The

expectation value of the sample mean is not the true

population mean as we presume, nor is the expectation

value of the sample variance the true population

variance. These results are especially troubling because

of our dependence upon finite samples to achieve

reproducible insights into the general population.

Impact of systematic error on data structures

In the acquisition of a typical polar, angle of attack

(alpha) levels are almost always varied sequentially

over some range of levels from smallest to largest,

despite the fact that for a typical 15-point polar, say,

there are 15! - 1 = 1,307,674,367,999 (1.3+ trillion)

other permutations of the set-point order from which to

choose. The polar could be constructed from alpha

levels acquired in any of these permutations, simply by

plotting the data in increasing order of alpha. That is,

while the data must be plotted as a monotonically

increasing function of alpha to produce a conventional

pitch polar, there is no reason in principal that it must

be acquired in that order.

A common reason for sequential ordering is that it

results in the highest possible data acquisition rate,

which is widely perceived as an important productivity

consideration. Also, sequential ordering minimizes

hysteresis effects caused by different flow attachment

mechanisms that depend on the direction of change in

angle of attack. A pitch polar acquired in increasing

order of alpha can differ from a similar polar acquired

in decreasing order of alpha, for example, so a certain

consistency is achieved when all set point levels are

approached from below. Finally, researchers often

claim that there are insights to be had by watching how

a polar develops as it is acquired, and that this enables

early detection of various potentially pathological

conditions.

While sequential ordering does have the virtues of

speed and consistency that are responsible for its

popularity in conventional wind tunnel testing, there is

a serious drawback. Sequential ordering of set-point

levels ensures that the forces and moments are acquired

as a function time as well as a function of angle of

attack. If systematic variations are in play as the polar

is acquired, the resulting data set will contain both the

effects of systematic changes in alpha, and the effects

of systematic changes in some unknown source of

unexplained variation.
This is a different and much more serious condition

than if the errors are all random. Random errors will

cause some scatter in the data, but that scatter can be

expected to occur about the true alpha dependence.

That is, the true polar will be revealed, except that there
will be some _Tuzz band" that reflects chance variations

in the data. (If there are constant bias errors, the polar

may also be displaced, but the shape of the polar, which

reveals the change in response due to a specified

change in alpha, will be correct. We will have more to

say about such bias errors presently.)

If the errors are systematic instead of random, the

polar can actually be disfigured in various ways. This

is because data acquired by setting independent variable

levels sequentially in time will depend upon changing

response levels attributable both to the effects of time-

varying alpha settings and to the effects of time-varying

response changes due to unknown systematic errors.

That is, the polar will reflect the true time-dependence

of the data, but this will not generally be the true alpha

dependence if systematic variations are in play. We say

in such cases that the true angle of attack effects are

%onfounded" by the unknown sources of systematic

variation. When alpha effects are confounded, it means

there is no way to know how much of an observed

change in response is due to systematic variations in

alpha, and how much is due to systematic variations in

something else, such as temperature or flow angularity

or instrumentation drift, or any of a large number of

other sources of systematic variation that are possible

when real experiments are performed.

Systematic variations are more troublesome than

simple random fluctuations in the data because they

complicate the association of observed effects with
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Figure 5. Effect of systematic variation on a

sequential lift polar.

specific causes, wreaking havoc with our conventional

perceptions of cause and effect. For example, consider

a lift polar acquired over a range of pre-stall alpha

settings in the presence of a persistent systematic

variation that causes lift measurements made early in

the polar to be biased somewhat low, while those

acquired later in the polar to be biased somewhat high.

If the systematic variation occurs at a constant rate, the

result of its imposition on the true alpha effect is to

rotate the polar counterclockwise. The slope of the

measured polar is greater than the slope of the true

polar, causing the lift for higher angles of attack to be

overstated while the lift at lower angles of attack are

understated. If the systematic variation does not occur

at a constant rate, the polar can be misshaped as well as

rotated. Also, certain fine structure in the polar might

be attributable to variations in the systematic error that

have nothing to do with angle of attack effects.

It is also possible for systematic variations to occur

between, but not during two time periods. In such a

case the polars will be displaced by whatever

systematic change occurs between the two blocks of

time. Veteran wind tunnel practitioners who have

known the frustration of imperfect polar replicates have

experienced these kinds of between- and within-polar

systematic variations first-hand.

Random errors in individual observations impose

their presence on us every time we replicate a data point

because previous points serve as a reference by which

to judge the latest point, but routine replication of entire

polars is often limited (or omitted entirely) as a

concession to demands for high-volume data collection.

We have relatively infrequent opportunities to judge the

shape of a polar against some comparable reference in

such circumstances, and it is therefore possible to suffer

from systematic errors without even knowing it. This is

one reason systematic errors are so troubling - they are

much harder to detect than random errors. For

example, if a lift polar is rotated by systematic

variation, we may not find out about this until much

later - sometimes not until another tunnel entry or until

subsequent flight tests have proven disappointing.

Even when polars are replicated during the same

experiment, if one polar differs from another there is

seldom any objective basis for selecting which of the

two (if either) is the _true" polar.

We will illustrate with a specific example how

systematic within-polar variation can generate errors in

a common pitch polar that are difficult to detect. Later,

we will return to this same example to illustrate a

tactical defense against such errors.

Consider a lift polar consisting of twenty
observations from which lift coefficient values are

estimated at each of four unique angles of attack: 0 °, 4 °,

8 °, and 12 °, so that each angle of attack is replicated 5

times. Figure 4 represents the resulting polar. For the

purpose of this example, we will assume that this polar

is comprised of completely error-free data. That is, we

will assume that figure 4 represents the true polar,

devoid of any effects of either random or systematic

error.

Now assume that some systematic variation is in

play while the data for this polar are acquired, and

assume further that the data are acquired in the usual

way, by setting angle of attack levels sequentially from

smallest to largest. The systematic variation would

then be superimposed upon the polar in figure 4. We

postulate a large systematic error in lift coefficient of

-0.10 when the first data point is acquired, that is

incremented by 0.01 for each subsequent measurement.

We also have assumed a random component of the

unexplained variance with a standard deviation of

0.018.

The effect of the postulated systematic error on the

first data point is that it will be biased low by 0.10 in

addition to the effect of random variation. The next

will be biased low by 0.09, and so on, until the

systematic error term reaches zero for the 1 lth reading.
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Thenextreadingwill thenbebiased0.01toohigh,the
oneafterthatwillbe0.02toohigh,andsoon,untilthe
20threadingisacquired,withapositivebiasof0.09.
TableI displaystheseerrors.Figure5comparesthelift
polaroffigure4withanidenticalpolarconsistingofa
first-orderpolynomialfunctionof alphafittedto the
dataof figure4,uponwhichthesystematicerrorsof
TableI aresuperimposedalongwithrandomerrors
drawnfroma normaldistributionwithmeanof zero
andstandarddeviationof 0.018.Thesystematicerror
hascauseda rotationin thepolar,as described
previously.

It isimportanttonotethatwithoutthe"true"polar
toserveasareferencein figure5,therewouldbeno
waytotellthatasystematicvariationhadcausedusto
generateanincorrectlift polar.Wewouldoverstatethe
lift athighangleofattack,understateit atlowangleof
attack,andhavenowayof knowingthatourlift
measurementsweresystematicallybiased.It is this
"stealth"aspectofsystematicvariationthatmakesit so
hardtodetectandthereforesoeasytoignore.

functionsto describehowtheydependon various
independentvariables.Wemightuseleast-squares
regressiontechniquestofit thedatatoaspecificmodel,
orabsentanycandidatemodel,ageneralTaylorseries
canbeusedto representtheunknownfunctional
dependence.TheTaylorseriesistypicallytruncatedto
includeonlytermsof highenoughordertoassurean
adequatefitwithoutfittingnoise.

It isconvenienttocodetheindependentvariables
asa preludeto developinga responsemodel,by
applyinga lineartransformationthatbothscalesand
centersthevariables.If _ representsanindependent
variablein physicalunitsand_minand_moxarethe
upperandlowerlimitsof therangeof thisvariable,
thenthefollowingtransformationwillmap_ intoxi, a

coded variable that ranges from -1 to +1, and is 0 at the

midpoint of the range.

_i -- 1/2 (_imax + _i min )

Xi -- 1/2 (_i max -- _i min )

(13)

Table I. Systematic error in a conventional

sequential lift polar

Run Angle of Systematic

Order Attack C L Error

1 0 -0.10

2 0 -0.09

3 0 -0.08

4 0 -0.07

5 0 -0.06

6 4 -0.05

7 4 -0.04

8 4 -0.03

9 4 -0.02

10 4 -0.01

11 8 0.00

12 8 0.01

13 8 0.02

14 8 0.03

15 8 0.04

16 12 0.05

17 12 0.06

18 12 0.07

19 12 0.08

20 12 0.09

Impact of systematic error on response models

We often wish to model responses such as forces

and moments by developing mathematical response

For example, the alpha values for a pitch polar

spanning the range of -4 ° to +10 ° can be coded by

substituting these values for _in and _ox in this

formula, yielding x_ = (_- 3)/7. So the center of the

alpha range, _z = 3°, codes into x_ = 0, the upper and

lower limits of +10 ° and -4 °, respectively, code into +1,

and all other alpha values for this polar code into x_

values in the range of +1. After such a variable

transformation, a second order Taylor series in two
variables would be of this form:

y=b 0 +b]x] +b2x 2

+b12XlX2+bllX_ +b22x_
(14)

where y is some response of interest (e.g., lift), the x_

are the independent variables (e.g., alpha and Mach

number), and the bi are regression coefficients

proportional to the partial derivatives of the Taylor

series that we numerically determine by a least-squares
fit to the data.

The coefficient for each term in the series is

subjected to the same formal inference procedure as

described above. Based on the uncertainty associated

with each coefficient, a reference distribution is

determined under a null hypothesis that the expectation

value of the coefficient is zero. If the magnitude of the

coefficient determined through least-squares regression

is small enough that the reference distribution under the

null hypothesis suggests its departure from zero can be

attributed to simple chance variations in the data, that

term is dropped from the Taylor series model.

A detailed tutorial on regression is beyond the

scope of this paper but in brief, the variance of a
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referencedistributionfor eachregressioncoefficient
underthe null hypothesisis determinedfrom a
correspondingelementofthediagonalofacovariance
matrixandis proportionalto d, the population
variancefor theresponsewemeasure.Unlessthe
randomsamplinghypothesisholds,if weestimatethis
parameterfromthesamplevariancewewillbeinerror
by equation9. Furthermore,eachcoefficientis
determinedfromaweighted,linearcombinationofthe
Yi that comprise all of the observations in the sample.

These estimates will be biased if the random sampling

hypothesis fails, by equation 8. In such a case,

systematic variation will induce errors in both the

estimate of the regression coefficient and the variance

of the distribution by which it will is evaluated to test

the null hypothesis, increasing the risk of an inference

error. The result of such an error would be to retain

extraneous terms in the model (if the null hypothesis is

erroneously rejected for one or more coefficients), or to

fail to include significant terms (if the alternative

hypothesis is erroneously rejected).

For example, if the null hypothesis for the bll term

in equation 14 is erroneously rejected, we would

assume that bll was zero when in truth it was not. We

would therefore drop it from the model, failing to

correctly predict curvature in the xl variable. Likewise,

if there actually was no significant curvature and we

failed to reject the null hypothesis for b11, we would

incorrectly forecast curvature for xl. In either case, not

only would our response model fail to make accurate

predictions, but we might also lose valuable insights

into the underlying physics of the process.
The effects of biased estimates of the mean

(equation 8) are felt in a special way in the Do

coefficient of equation 14. This coefficient is a

constant that represents the y-intercept of the response

function. After the coding transformation of equation

13, it is computed by simply averaging all of the

response measurements in the data set. Hypothesis

testing is not normally applied to assess whether this

term is real or not, although this can be done in

circumstances for which an objective test is desired to

determine if the response model passes through the

origin (i.e., to determine if Do can be reliably

distinguished from 0). For example, if the response

function represents a calibration curve relating the

output of a transducer to its input, the intercept term is

expected to be zero in cases where zero input should

produce zero output. In such cases, a rejection of the

null hypothesis for Do may indicate that the calibration

function needs to be improved.

The effect of within-polar systematic variation is to

bias the y-intercept per equation 8, so that not only is

the shape of the response function misrepresented

because of terms that are erroneously dropped or

retained due inference errors in assessing the reality of

the individual coefficients, but the level to which

changes in the response function is referenced can be

either too high or too low, biasing all predicted

response values accordingly.

In summary, the random sampling hypothesis is

necessary for developing reliable response models from

experimental data. If we acquire data for which the

random sampling hypothesis does not hold, we can

generate response models that are both misshaped and

biased.

Evidence of Autocorrelation

in Real Experimental Data

We have introduced the random sampling

hypothesis and described some of the consequences of

acquiring data when it does not apply. These are

conditions for which data points are more alike when

they are acquired over shorter intervals than longer
intervals. Such conditions can be attributed to

systematic sources of unexplained variance that persist

over time, such as temperature effects, instrumentation

drift, etc.

We have seen that when the random sampling

hypothesis does not apply, sample statistics such the
mean and variance are not reliable estimators of the

corresponding population parameters. We have also
seen that the risk of inference errors is inflated under

such conditions, and that common data structures such

as a pitch polar can be shifted, rotated, or bent due to

within- and between-polar systematic variation,

disguising true underlying stimulus/response

relationships.

Given the substantial negative impact that

systematic variation can have of sequentially acquired

data, it is important to ask just how frequently such

conditions exit in typical ground test experiments. If

they are sufficiently rare, we may be justified in

ignoring them on a cost/benefit basis, notwithstanding

the fact that they can be troublesome when they are

present. The argument in such a case would be that it is

not cost-effective to _%hase ghosts" that are not likely to

harm us. We will note the results of a long-term

investigation at NASA Langley Research Center that

provides convincing evidence that systematic variations

are not rare, and we will also summarize the results of a

recent wind tunnel experiment in which one of the

specific objectives was to quantify how often

systematic variations can be detected in a representative

wind tunnel experiment if an effort is made to do so.

However, it is worth noting first that a substantial

volume of anecdotal evidence already exists to support

the notion that systematic variations are routinely

recognized, if only implicitly, in conventional wind

tunnel testing.
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Muchof thestandardoperatingprocedurein a
conventionalwind tunnel test is devotedto
countermeasuresagainstsystematicvariationsthatare
implicitlyunderstoodtobeinplay.Forexample,the
prudentwindtunnelresearcherseldomletsmorethan
anhourelapsebetweenwind-offzeros.Thisis tacit
recognitionofthefactthatvarioussubtleinstabilitiesin
themeasurementsystemscanhaveacumulativeeffect
overprolongedperiodsoftime.Theintentoffrequent
wind-offzerosistominimizethiseffectbyessentially
resettingthe systemto a constantreferencestate
periodically.Unfortunately,this proceduredoes
nothingto defendagainstadverseaffectscausedby
meanderingsystemsbetween wind-off zeros. There is

an inherent assumption that if the zeros are acquired

frequently enough, the system will not have had time to

shift far enough between zeros to be of serious concern,

but perceptions of what constitutes _frequently

enough", _far enough", and _%erious" are generally left

to the subjective judgment of the researcher. There is

no guarantee that some effect did not come into play

between zeros to invalidate the random sampling

hypothesis for much of the data acquired in that period.

Wind-off zeros are just one of a number of

standard wind tunnel operating procedures that reveal a

general cognizance of persisting systematic variations

and the need to establish formal procedures to defend

against them. Data systems are routinely calibrated

over short time intervals, for example; daily calibrations

are common, and calibrations as often as every few

hours are not unusual. Clearly this would be

unnecessary in a stable environment in which nothing

ever changed over time. Frequent model inversions to

quantify flow angularity are also a staple of

conventional wind tunnel testing. Again, the reason is

clear. It is only necessary to make regular corrections

for flow angularity under conditions for which the flow

angularity changes over time. The same can be said for

the reason that electronic pressure instrumentation is

calibrated so frequently during a typical wind tunnel

test, and why occasional adjustments are made to

automated control systems to minimize set-point errors.

_Things change" is one of the most reliable maxims in

all of ground testing.

The effect of changes that persist over prolonged

periods of time is to invalidate the random sampling

hypothesis, with the attendant adverse effects

documented earlier. These effects result from

conditions in which the differences between replicates

acquired over longer periods are not the same as the

differences between replicates acquired over shorter

periods. A wind tunnel testing technology development

of major significance has been the careful

documentation over a period of years by Hemsch and

colleagues at NASA Langley Research Center that

routine differences do in fact exist between what they

describe as _within-group" and _between-group"

variance estimates 5'1°. _Within-group" observations are

those acquired over relatively short periods of time -

minutes, typically - in which the variance can be

attributed primarily to ordinary chance variations in the

data that result in common random error. The

_between-group" variance is associated with ordinary

random error plus the effects of changes in within-

group sample means that can be attributed to systematic

variation persisting over relatively long time periods.

The magnitude of the between-group variance has been

shown by Hemsch and his associates to consistently and

substantially exceed the magnitude of within-group

variance. Typically, between-group variance estimates

are factors of 2-3 times as large as within-group

variance estimates, or more. The fact that such large

differences are so consistently reported between short-

term and long-term variance estimates is an indication

that systematic variation is both common and

significant in typical ground testing scenarios.

Equation 11 is simply an analytical representation of

what Hemsch discovered empirically - that over

prolonged periods of time the variance due to ordinary

random errors, o_, is augmented by a component due to

systematic sources of variance, G}, that persist over

time. The expectation value of sample variance reflects

both of these effects, rendering the sample variance an

unreliable estimator of population variance when only
random variations are assumed.

An experiment to detect autocorrelation

An experiment was recently conducted at Langley
Research Center in which a number of conventional lift

polars were replicated, but with a slight variation to

facilitate the detection of within-polar systematic

variation that can otherwise be so difficult to detect, as

noted above. (It turns out that this alteration in data

acquisition procedure is also key to eliminating the

adverse effects of systematic variation, as will be

developed below.)

In this experiment, ten commercial jet transport

wing configuration settings were examined at each of

seven Reynolds numbers, all at a constant Mach

number. For the seventy combinations of Reynolds

number and configuration, two lift polars were

acquired. One was a conventional polar in which angle

of attack levels were set in increasing order in the usual

way. In the other polar, the same angle of attack levels

were set as in the conventional polar, but the order was

set at random. In addition, one angle of attack (6 °) was

replicated several times. There were four 6 ° settings in

half of the randomized polars, and eight 6 ° settings in

the other half. The replicates were interleaved among

the single-level alpha settings and were therefore

uniformly distributed among all the points in the
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Figure6.TimehistoryofCLreplicates.Circles:randomizedpolar;square:sequentialpolar.(a)Between-polar
variationwithapositiveslopecontinuesintosecondpolar.(b)Between-polarsystematicvariationofroughly
200%oftheentire0.005errorbudget.(c)Onsetof systematicvariationin mid-polar,continuingbetween
polars.(d)Between-polarsystematicvariation.(e)Systematicvariationbeginsattheendof onepolarand
continuesbetweenpolars.(f)Systematicbetween-polarvariation.

randomizedpolar.Carewastakentoensurethatallset-
pointswereapproachedfrombelowto eliminate
hysteresiseffects,byfirstgoingtoa"home state" alpha

setting below the smallest alpha level in the polar

whenever the next point in the randomized sequence

was at a lower alpha value than last point. The

randomized and sequential polars were run back to

back, with the order selected at random.

Systematic variation could be detected in this

experiment in two ways. First, the replicated lift

measurements could be plotted as a function of time.

Absent systematic variation, these points should all be

the same within experimental error, and their time

histories should be generally featureless, displaying no

particular trend. On the other hand, pronounced within-

polar systematic variation should result in some

structure in the time history of replicates acquired in the

same polar. Between-polar variation should result in a

significant displacement between the replicates

acquired in the randomized polar, and the single lift

point acquired at 6 ° in the conventional polar.

Plotting time histories of replicates has the

disadvantage that it is a subjective way of establishing

the presence of systematic variation, which can be in

the eye of the beholder. Those who are inclined to fear

systematic variation might see pronounced trends in
time histories that seem featureless to those inclined not

to be bothered by such effects. (Incidentally, this

weakness is not confined to the search for correlation in

replicate time histories. It applies whenever subjective

judgment is the basis for conclusions drawn from the

examination of graphs and other representations of

data.) Nonetheless, a few examples of time histories

are presented in figure 6 in which reasonably

pronounced trends would have to be acknowledged by

even the most reluctant observer. These trends reveal

both within-polar and between-polar systematic

variations that are not simply substantial portions of the

entire 0.005 error budget declared for this experiment,

but which are in fact significant multiples of the entire

budget. In these figures, the circular symbols represent

points acquired in the randomized polar at c_=6 °, and

the square symbol represents the single c_=6 ° point

acquired in the corresponding conventional polar.

A technique for a less subjective approach to

detecting systematic variations was outlined above in

the general discussion of scientific inference. In short,

we define a null hypothesis which in this case is, "No

correlation among the observations in the sample", we

construct a reference distribution representing how a
relevant statistic should be distributed under that

hypothesis, and we either reject the null hypothesis or

not, depending on whether the observed value of that

statistic is or is not generally within the range of values

that would be expected if the null hypothesis were true.
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This objectiveinferenceprocedureleadsto
conclusionsthatarebaseduponasetofproceduresand
criteriaagreeduponbeforethedataareacquired.Ithas
thevirtuethatit reducesourdependenceonpure
subjectivejudgment,which is vulnerableto
subconsciousprejudicesandalsoto theconflicting
judgmentsofotherswhomaysimplybeinclinedtosee
thingsdifferently*.

In this specificstudy,the lift datafromthe
randomizedpolarswerefittedtopolynomialfunctions
ofalphaservingasTaylorseriesrepresentationsofthe
unknownfunctionaldependenceof lift onalpha,as
describedabove.Theanalysiswasrestrictedto pre-
stallalpharangesforwhichthealphadependenceis
dominatedby thefirst-ordertermin a least-squares
regression.However,smallersecond-ordertermswere
oftenfoundtobesignificantbythisprocedure,andso
werethirdordertermsonoccasion.Nosignificant
termsof orderfouror higherwereobserved.The
resultingfirst-,second-,or third-orderpolynomial
functionsof alphaweresubjectedto a batteryof
standardgoodness-of-fitteststoassesstheiradequacy.
Thecentralcriteriawerethatthemagnitudeof the
unexplainedvariancebeacceptablylow(standarderror
nogreaterthan0.0025in lift coefficientforanaverage
"two-sigma"valueof0.005overthealpharange),and
thattheresidualsberandomlydistributedaboutthe
fittedcurve.

Thislattercriterionensuresthatwhenresidualsare
plottedasa functionof alpha,theyarerandomly
distributedaboutzeroand thereforecontainno
informationtosuggestthatanalternativemodelwould
betterrepresentthealphadependence.Wewould
concludeundersuchcircumstancesthatadditional
alphatermsin ourtruncatedTaylorserieswouldnot
improvethefit.

Likewise,if theresidualsplottedasafunctionof
timearerandomlydistributedaboutzerotherewillbe
no informationto suggestthatanalternativemodel
wouldbetterrepresentthetime dependence we assumed

in the lift model. Of course, we assumed no time

dependence when we fit the lift data only to alpha, but

this is equivalent to fitting the data to both alpha and

time and discovering that the regression coefficients of
all time-related terms in our model are zero.

Featureless plots of residuals as a function of time

would tend to validate this model and, analogous to the

featureless plots of residuals against alpha, would

support the conclusion that no additional (non-zero)

time terms would improve it. We could infer in that

case that as we acquired our data, the lift coefficient

was changing only as a function of alpha and not also

as a function of time.; The random sampling

hypothesis could be assumed for such data as there

would be no net difference in the residuals of points

acquired over relatively short time intervals and those

acquired over longer intervals.

A total of seven standard hypothesis tests for

correlation were applied to the residual time histories of

each of the seventy randomized polars. These tests are

listed in Table II. Detailed descriptions of each test can

be found in standard references and are beyond the

scope of this paper, but the basic approach was the

same as for any formal hypothesis test: We formulated

a null hypothesis that some measure of autocorrelation
was zero and established a reference distribution for

how that quantity would be distributed due to chance

variations in the data if the null hypothesis were true.

Observed values that were different from zero by more

than could be reasonably attributed to ordinary chance

variations in the data were interpreted as evidence of
non-zero autocorrelation. We concluded that those

polars were acquired under conditions for which the

random sampling hypothesis did not apply.

Table II: Tests for correlated residuals

1 Durbin-Watson Test

2 Swed-Eisenhart Runs Test

3 Pearson's Product Moment Test

Test of Significant Trend in Residuals
Serial Correlation Test

6 Wilcoxon-M ann-Whitney Test

7 Spearman Rank Correlation Test

A significance level of 0.05 was specified. The

number of polars for which the null hypothesis of no

correlated residuals was rejected at this level varied

* As a practical matter this reduced reliance upon

subjective judgment is not universally embraced,

especially among those who regard _judgment" as a

major element of their contribution to the research

process. The intent here is not to suggest that judgment

is irrelevant to those possessed of statistical expertise,

but to say simply that objective techniques for making

inferences can bring additional clarity to the judgment

process. It also helps defend us against the prejudices

of others, and our own.

; Had alpha levels not been set in random order but

instead had been monotonically changed with a

constant data acquisition rate in the usual way, time and

alpha effects would be completely confounded so that

the time dependence of the residuals could not be

distinguished from the alpha dependence. In such a

case, plotting the residuals against time would provide

no additional information beyond plotting them against

alpha, because the two plots would be identical except
for the scale labels for the abscissas.
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somewhatfromtestto test. Outof 70randomized
polarsa minimumof 11anda maximumof 21
displayedevidenceof correlatedresiduals,depending
onthespecifictest,buttheaveragewas17timesoutof
the70polarsexamined,orabout24%.Thatis,on
averagein24%ofthepolars,wewereabletosaywith
at least95%confidencethattherandomsampling
hypothesisdidnotapply.

It ispossiblethattheparticularconditionsofthis
testwereunusuallyconduciveto systematicvariation
andthat17correlatedpolarsoutof 70is unusually
high.Ontheotherhand,it isequallyplausiblethatthis
specifictestwasconductedunderconditionsforwhich
systematicvariationwouldbeexpectedto occurless
oftenthanusual,andthat17correlatedpolarsoutof70
representsa lowerlimit onwhatmighttypicallybe
expected.Wecomputedthattherangeof Bernoulli
trialsuccessprobabilitiesmustlie between15%and
35%toobserve17successesoutof70atleast95%of
thetime.(Anythinglessthat15%wouldgenerate17or
morecasesoutof 70lessoftenthan95%of thetime
andanythingmorethan35%wouldgenerate17or
morecasesoutof70moreoftenthan95%ofthetime.)

Thatis,weaskedwhattheprobabilitywouldhave
tobeofanindividualpolarhavingcorrelatedresiduals
if morethan17outof70wouldbeobservednomore
than2.5%of thetime. Theansweris 15%.We
likewiseaskedwhattheprobabilitywouldhavetobeof
anindividualpolarhavingcorrelatedresidualsif less
than 17 out of 70 would be observed no more than 2.5%

of the time. The answer to that was 35%. We therefore

concluded that, given an observation of 17 correlated

polars out of 70 tested, we could say with 95%

confidence that the random sampling hypothesis would

be expected to fail between 15% to 35% of the time.

Figure 7 illustrates for each of the seven specific

tests noted in Table II what specific upper and lower

limits were computed for the probability of an

individual polar being acquired under conditions for

which was random sampling hypothesis does not hold.

There is some variability from test to test, but taken as a

whole these tests support the general conclusion that to

the extent that this test could be regarded as

representative, correlated residuals could be expected

between 15% and 35% of the time, or in roughly every

7 th polar at best, and every 3 rd polar at worst.

There are two reasons to suspect that these

percentages are lower limits on the true frequency with

which the systematic variations are in play in wind

tunnel testing. First, the time series analysis methods

used could only test for within-polar systematic

variation. The time histories in figure 6 suggest that

between-polar systematic variation occurs as at least as

often as within-polar systematic variation.

Secondly, none of the correlation tests were very

sensitive for samples as small as the number of pre-stall

Figure 7. 95% confidence intervals for probability

of systematic within-polar variation, various
statistical tests.

points in a lift polar. The degree of correlation

therefore had to be quite severe to register in these tests.

It is quite likely that correlations large enough to be

troublesome, but too small to be reliably detected with

such small sample sizes, occur more often than the 15%

to 35% range quoted here.

Tactical Defenses a_ainst

Systematic Unexplained Variance

We have found that there can be serious

consequences if we assume that the random sampling

hypothesis applies when it does not, and we have also

seen that the random sampling hypothesis probably

fails too often in wind tunnel testing to safely take it for

granted. It is not unlikely that much of the difficulty in

achieving reliably reproducible wind tunnel results is

due to variably biased estimates of population means

and variances, caused by improper assumptions of

random sampling.

Fortunately for the 2 lSt-century experimental

aeronautics community, random sampling has been

sufficiently elusive in other experimental circumstances

besides wind tunnel testing that over the years certain

effective tactics have been developed to defend against

the adverse effects of its unwarranted assumption.

Savvy experimentalists in other fields have long

recognized that the random sampling hypothesis is

simply too unreliable to count on consistently. They

assume as a matter of course that it will not apply

naturally when they acquire data, and take proactive

measures to impose random sampling on their samples,

using techniques to be described in this section.

Randomization: A Defense Against Within-Sample

Systematic Variation

The problems induced by unstable sample means

were first recognized by Ronald Fisher and his
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associatesearlyin thelastcentury_. Heproposeda
conceptuallysimpleyet effectivetacticaldefense
againsttheadverseimpactof systematicwithin-sample
variation.Fisher'sideawasto setthelevelsof all
independentvariablesin randomorder. Wehave
alreadyseenin theabovediscussionof residualtime
historiesthatrandomizationdecouplesthecomponents
ofsystemresponsethatcanbeattributedtointentional
changesintheindependentvariablesfromchangesthat
areduetounexplainedsourcesof systematicvariation
thatchangeasafunctionof time.Thispermitsusto
seethetruedependenceof systemresponseon the
changeswemakeintheindependentvariables,clearof
theeffectsofanysystematicvariations.Wecanexploit
thisdecouplingbyadoptingrandomizationaspartof
the standardoperatingprocedureof a prudent
researcher,asrecommendedbyFisher.

Table III. Systematic error in a

randomized lift polar

Run Angle Systematic

Order of CL Error
Attack

1 4 -0.10

2 4 -0.09

31 o ! _oo8
4 8 -0.07

s l 0i06
6 12 -0.05

7 8 -0.04

8 12 -0.03

9 4 -0.02

lo'. o ! _oiol
11 8 0.00

12 8 0.01

13 12 0.02

14 4 0.03

1
16 8 0.05

17 12 0.06

19 4 0.08

20 12 0.09

To illustrate the effect of randomization in a

common wind tunnel scenario, we revisit the lift polar

example considered earlier, in which systematic within-

polar variation rotated the polar as in figure 5. Recall in

that case that the rotation of the polar was caused by

superimposing on the true alpha dependence a

1.0

0.8

.-_ 0.6
u

0.4
o

0.2

..a 0.0

-0.2

:_:_:_:_:_:_:_:_:_:_:_:_:_:_ . _====================================================================================

f

0 4 8 12

Angle of Attack

_'Truth' m - Randomized]

Figure 8. Effect of systematic variation on a

randomized lift polar.
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Figure 9. Residuals from randomized polar in order

of alpha and in run order (by time).

systematic variation changing at a constant rate during

the time the polar was acquired, starting with a lift

coefficient bias error of -0.1 for the first data point and

incrementing by 0.01 for each of the 19 remaining

points in the polar, as in Table I.

Imagine now that we repeat the experiment under

exactly the same conditions, except that we will set the

angle of attack levels in random order, as indicated in

Table III.

In the standard order case of Table I, zero degrees

angle of attack is set in the first five measurements,

where the bias error in lift coefficient was -0.1 through

-0.06, for an average of -0.08. When we randomize the

angle of attack set-point order however, zero degrees is

set in the third, fifth, tenth, fifteenth, and eighteenth

measurement as highlighted in Table III, where the

systematic errors are -0.08, -0.06, -0.01, +0.04, and

+0.07, respectively. The average systematic error in lift

coefficient for these c_=0 ° points is -0.008, an order of

magnitude less than in the conventional sequential-
order case.
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Figure 10. Impact of angle of attack set-point order

on standard error in lift coefficient in presence of

systematic variation.

The systematic component of error is so much less

when the alpha levels are set in random order than

when they are set sequentially because randomizing

causes some of the lower-alpha values to be acquired

earlier - when the systematic errors are negative - and

some to be acquired later - when the systematic errors

are positive. The same is true for the higher alpha

values - some are acquired earlier and were therefore

negative while some were acquired later and were

positive. As a result, the systematic variation is

converted to ordinary random fluctuations occurring

above and below an unbiased estimate of the true polar

shape, These random errors are minimized by

replication, which tends to cause positive and negative
random errors to cancel.

Figure 8 plots the polar constructed from a first-

order polynomial fit to the data associated with

randomized angle of attack set-point levels and

compares it to the "true" polar of figure 4. A

comparison of figures 8 and 5 shows that when

systematic within-polar variations are in play, a

randomized polar compares much better with the true

polar than one acquired with sequential alpha settings.

Figure 9 displays the residuals from the

randomized polar plotted two ways. The open circles

show the residuals plotted as a function of increasing

angle of attack while the filled circles show the

residuals plotted in run order; that is, as a function of

time. Absent any systematic variation during the polar,

the run order would be irrelevant and both the plot as a

function of alpha and the plot as a function of time

would be featureless for a good fit to angle of attack.

However, figure 9 quite clearly shows structure in the

residual time history that reveals how earlier points

were biased lower while later points were biased

higher. Notwithstanding this systematic bias, the

featureless plot of residuals against alpha suggests that

there is no substantive deficiency in the modeled alpha

dependence.

One option available to the researcher to further

improve precision is to de-trend the residual time

history, essentially correcting for the time-varying

component of the unexplained variance. However, this

option is only available in cases for which the

systematic variation is sufficiently extreme to be seen

unambiguously in a residual time history of a sample as

small as that acquired in a polar. The more common

case is for systematic variation large enough to

invalidate the random sampling hypothesis to be

nonetheless too subtle to detect by visual inspection.

We can quantify the improvement wrought by

randomization in this illustration because we have

stipulated what the "true" polar is, and can therefore

quantify differences between this and the polars

acquired under systematic variation for both the

sequential and randomized set-point ordering schemes.

We compute a mean square error, __2, by summing the

squared deviations of the observed polar from the true

polar and dividing by the number of observations - 20

in this case. _ The prediction error will depend on alpha,

being smaller near the center of the polar than near the

ends, but the average mean square error over all points

in the sample is p_2/n,where p is the number of

parameters in the model (2), and n is the number of

points in the sample (20). The square root of this is the

standard prediction error for lift coefficient (the "one-

sigma" error in model prediction); 0.018 for the

sequential polar and 0.004 for the randomized polar, as

figure 10 shows.

Randomization has reduced the model prediction

error by more than a factor of 4. To have achieved a

similar reduction through replication alone would have

required 16 times as much data, even assuming the

original errors were random. For the relatively modest

cost associated with acquiring the data in a random

alpha sequence, the same benefit could be achieved

without acquiring any additional data. In any case,

given that the errors were largely systematic, no amount
of additional data would have reduced the error

significantly when the angle of attack levels were set

sequentially, so conventional replication alone would
have been ineffective no matter how much extra data

had been acquired. This is another reason that

gratuitously maximizing data volume is no guarantee of

If we were computing this mean square error from a

fitted estimate of the true polar, we would divide by 18

rather than 20, since in that case two degrees of

freedom would be lost to estimates of the slope and y-

intercept for a first-order function of alpha. In this case,

the slope and y-intercept are assumed to be known, so

no degrees of freedom are lost in estimating them.
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Figure 12. Plots of ei versus ei-1 for three states of

lag-1 autocorrelation, data drawn from a normal

distribution with mean of 0 and standard deviation

of 0.005. (a) Pl =0. (b) Pl =+0.4. (c) Pl =-0.4.

Figure 11. Time history of 1000 normally

distributed CL errors with three states of lag-1
autocorrelation.

reduced inference error risk unless precautions have

been taken to ensure the random sampling hypothesis.

Note also that each data point was modeled in this

example as the sum of three quantities: the true lift

coefficient as represented by figure 4, a large

systematic error from tables I and III, and a random
error drawn from a normal distribution with mean of

zero and standard deviation of 0.018. The

corresponding standard deviation in the distribution of

sample means would be in this case

0.018/_-O= 0.004. To three decimal places, this is

the same numerical value as the mean standard error in

the prediction for the randomized polar, as figure 10

shows. This standard error in the prediction includes

both this random component of error, plus any residual

systematic error, so to three decimal places

randomization in concert with replication has

essentially eliminated the systematic component of

error, notwithstanding the fact that it was the dominant

source of error at the start. Clearly the dominant error

is now random, and the random sampling hypothesis is

therefore restored.

Note that randomization has defended us against a

serious systematic error that we are not likely to have

detected had we acquired the data in sequential order.

Our first inking of a problem might not have occurred

until much later, perhaps in another wind tunnel test or

in a flight test, when it would have become apparent

that our predictions of lift coefficient overstated the lift

substantially at higher angles of attack and understated

it at lower angles of attack. Such easily avoidable

errors are often attributed in hindsight to poor wind

tunnel facility performance when they are ultimately

detected, but a rather more honest appraisal might
include the failure of the researcher to use standard

available precautions in the design of the experiment to

insure against systematic errors that invalidate the

random sampling hypothesis.

In this example we considered an exaggerated

systematic error simply to be able to resolve its effects

graphically in a comparison with the true polar, as in

figure 5. Obviously the true polar is never available in

real experiments to make such a comparison, and we

are usually faced with systematic variations that cause

errors much smaller than 0.100 in lift coefficient, which

is as much as two orders of magnitude larger than the

entire error budget in some high-precision performance

wind tunnel tests, for example. We will therefore now
consider more realistic levels of error in which the

correlation may be too subtle to detect readily. We will

examine the impact of such subtle correlation on our

ability to extract reliable inferences from finite samples
of data.

Figure 11 presents three hypothetical lift

coefficient error time histories, each with 1,000

observations. In figure 11 a, the errors are drawn from a
normal distribution with a mean of 0 and a standard

deviation of 0.005, satisfying requirements that would

not be atypical for a common wind tunnel configuration

test. All of the errors are independent of each other so

there is no correlation among the individual points. In

other words, the random sampling hypothesis would be

valid for any data set characterized by this error time

history.

Figures l lb and l lc display time histories that

differ from the one in l la in that a mild positive

correlation is introduced in 1 lb, and a mild negative

correlation is introduced in 1 lc. Specifically, the points

in 1 lb and 1 lc were generated to ensure that each was
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correlatedwiththeoneimmediatelyprecedingit. To
producethe dataset in l lb and l lc we set
ei di + keg_l, where d_ is the i th error without

correlation, drawn from the same normal distribution

with mean of zero and standard deviation of 0.005 that

produced 1 la. Thus e_ is the i th error with correlation,

and k is a constant chosen in this case to generate a

lag-1 autocorrelation coefficient, ,ol, of +0.4 for llb

and -0.04 for 1 lc, computed as follows:

n-1

Pl = i=1 (15)

i=l

125

IO0

75

50

25

0

Normal Error Distribution

:::::::::::::::::::::::::::::;.::;.:_.:.:.:::::_.:::::::::::::::::::::::

p=0 p_0.4 9=+0.4

Lag-1 Autocorrelation Coefficient

Figure 13. Impact of set-point order on inference

error probability for different levels of correlation.

Normal error distribution.

All three time histories in figure 11 appear

qualitatively indistinguishable, despite differences in

the degree of autocorrelation. This illustrates how

difficult it is to detect correlation without a special

effort to do so. A graphical method for revealing lag-m

autocorrelation is to plot the i t_ residual against the i-1 _

residual. In figure 12, such plots were constructed

using the corresponding data from figure 11. The

uncorrelated data points generate a symmetrical pattern

but the positively and negatively correlated points

display a pronounced positive and negative slope,

respectively.

We now construct a null hypothesis that we know

to be true, which is that the difference in two ten-point

sample means drawn from the data sets of figure 11 is

zero. (Each individual point was drawn from a normal

distribution with a mean of zero, so any 10-point

sample mean has an expectation value of zero.) We

construct a reference distribution corresponding to this

null hypothesis in the usual way, and use it to determine

if the number of times the null hypothesis is rejected is

more or less than would be expected. In this case, the
test statistic is constructed as follows:

_2 -- _1
t - (16)

1
Spff l 1

_FI 1 17 2

where the numerator contains the difference in the two

sample means, n_ and n2 are the sample sizes (both 10

in this case), andsp2iS the pooled sample variance,

computed as follows:

2 '_(n_ -1)+'_(n2 -1)
Sp - (17)

n_ +n 2-2

where s_ and s2 are the standard deviations estimated

from the observations in the two samples.

Under the assumption of random sampling from

normal populations, the statistic in (16) follows a

t-distribution with n_ + n2- 2 = 18 degrees of freedom,
which serves as a reference distribution. We can

compare this with a critical t-statistic corresponding to a

significance level of 0.05, say, and accept or reject the

null hypothesis depending on whether the computed

t-statistic is less than or greater than the critical value.
See the above discussion of reference distributions for

more details.

Because the null hypothesis is known to be true in

this case, we can expect it to be rejected in a two-

sample t-test only because of chance variations in the

data. Since we selected our reference t-statistic to

correspond to a significance level of 0.05, this should

occur in about 5% of the cases we try. Each data set in

figure 11 has 1000 data points so we can compare a

total of 500 unique pairs of 10-point samples. We

would expect chance variations in the data to cause

erroneous rejections of the null hypothesis

0.05x500 =25 times under the random sampling

hypothesis. Of course, we would not expect every

individual 500-pair set of data to produce precisely 25

rejections every time, any more than we would expect

50 flips of a coin to produce precisely 25 heads every

time. (If a fair coin is flipped 50 times, there is a 95%

probability that heads will appear between 18 and 32

times, or in a range of +7 times about the expected

value of 25.)

We did in fact conduct the above-described t-test

for a difference in means using all 500 unique pairs of

10-point samples that could be extracted from each of

the three 1000-point data sets in figure 11. We

conducted the test in two ways. First, we acquired

samples in sequential order, comparing the mean of the

first 10 points to the mean of the second 10 points for

2O

American Institute of Aeronautics and Astronautics



iiiiiiiiiiiiiiiiiii ii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiii

iiiiiiiiiiiiiiiiiilil__ .........................................._i_i_i_ii_i_iiii_i_ii_ii_i_i_i_iiii_i_i_ii_ii_i_ii_i_i_iii_ii_ii_i_ii_i

iiiiiiiiiiiiiiiiiiiiiiiiii_iiiii_ii_iiili_i_iiiiiii_iiii_i_iii_i_ii_iiiiii_i_iiii_iii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 14. Time history of 1000 uniformly

distributed C_ errors with three states of lag-1
autocorrelation.

Figure 15. Time history of 1000 C_ errors drawn

from a skewed (4-df chi-squared) distribution with

three states of lag-1 autocorrelation.

the first comparison, the mean of points 21-30 and the

mean of points 31-40 for the second, and so on until the

entire 1000-point data set was exhausted and 500

unique 10-point sample pairs were compared. We then

repeated the process after completely randomizing the

order of the 1000 data points in each of the three data

sets in figure 11. The number of times the null

hypothesis was erroneously rejected is displayed in

figure 13.

Figure 13 shows that when the data points were

independent, sequential and random ordering resulted

in 31 and 28 rejections of the null hypothesis,

respectively, reasonably close to the expected value of

25. Likewise, for the points sampled in random order

both positively and negatively correlated data yielded in

the neighborhood of 25 rejections (26 and 21,

respectively). However, when the correlated data were

sampled in sequential order, the t-test for a difference in

means gave results that were substantially different

from what would be expected under the random

sampling hypothesis. The negatively correlated data

generated only four rejections of the null hypothesis,

and there were one hundred rejections when the data

were positively correlated.

We have an expectation of 25 rejections of the null

hypothesis when a criterion corresponding to a

significance of 0.05 is used with 500 trials. However,

this expectation is predicated on two assumptions. One

is that the random sampling hypothesis holds, but the

other is that the sample means are drawn from a normal

distribution. We are relying on the Central Limit
Theorem for assurance that the difference in two

10-point sample means is drawn from a normally

distributed population, regardless of the distributional

properties of the populations from which the two

individual samples were drawn. We therefore expect

the quantity in (16) to follow a t-distribution if the

random sampling hypothesis holds. However, it is

possible that the difficulty we are having with the

sequential ordering of correlated data is not that the

points are not independent, but that for relatively small

(10-point) samples the sample means fail to

approximate a normal distribution adequately.

Therefore the solution might not necessarily be to

ensure independence in the individual observations, but

instead to rely on larger sample sizes (more data) for a

better approximation of a normal distribution via the

Central Limit Theorem. To test this, we repeated the

above experiment with two additional 1000-point data

sets. In one of them, the individual data points were all

drawn from a uniform distribution. That is, the

probability distribution was not the familiar bell-shaped

Gaussian, but a rectangular _boxcar" distribution. In

the other 1000-point data set, the points were drawn

from a chi-squared distribution with four degrees of

freedom, which is highly skewed. Since both of these
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Figure 16. Independent lift coefficient errors. Plots of ei versus ei-1 for samples with lag-1 antocorrelation

coefficient p_ = 0, drawn from three population distributions.

distributions are substantially different from normal, we

would expect to see some change for the worse in the

number inference errors generated in the two-sample

t-test.

Figures 14 and 15 show the error time histories

with no correlation, positive correlation, and negative

correlation, for the uniform and skewed distributions,

respectively. Note that just as in the case of errors

drawn from a normal distribution, it is difficult to tell

by inspection which time histories are independent,

which exhibit positive correlation, and which are

negatively correlated. Figures 16-18 compare the

corresponding lag-1 antocorrelation plots with the case

of normally distributed errors considered already. The

uniform (boxcar) distribution produces relatively

sharply defined boundaries in the antocorrelation plot

as expected from its discontinuous boundaries, and the

autocorrelation plots for the chi-squared distribution are

much more densely populated in the lower left than in

the upper right. Points in the lower left of the chi-

squared autocorrelation plots correspond to two

relatively small values occurring in succession, while

points in the upper right correspond to two relatively

large values occurring in succession. Because a low

degree-of-freedom chi-squared distribution is strongly

skewed to the right (long tail to the right, mode or peak

shifted to the left), smaller values are relatively likely to

be drawn and larger values are less likely. Two small

values in a row are therefore not unlikely to occur,

while it is it is much less likely that two high values

will occur in a row, because single occurrences of high

values are relatively rare. This explains the high

density of points in the lower left of the chi-squared

autocorrelation plots and the low point density in the

upper right of these plots.

Figures 19 and 20 show how many times the null

hypothesis was erroneously rejected for the case of

individual errors being uniformly distributed and highly

skewed, respectively, for lag-1 autocorrelation

coefficients, ,ol, of 0, +0.4, and -0.4. We see the same

general pattern as in figure 13, where the errors were

drawn from a normal distribution. That is, for all three

distributions randomization ensures the random

sampling hypothesis regardless of correlation. When

correlated data are acquired as two successive samples,

the assumption of random sampling leads to

substantially more or substantially fewer rejections of

the null hypothesis than one would actually encounter

with negative or positive correlation, respectively.

Since these conclusions held for all three distributions,

the data in figures 13, 19, and 20 are averaged across

distributions and presented in figure 21, which clearly
shows how randomization stabilizes the inference error
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Figure 17. Correlated lift coefficient errors. Plots of ei versus ei-1 for samples with lag-1 autocorrelation

coefficient P l = +0.4, drawn from three population distributions.

risk (probability of erroneously rejecting the null

hypothesis) when the random sampling hypothesis fails.

To understand why negative correlation results in

fewer H0 rejections than expected while positive

correlation results in so many more, consider the

variance of the difference between two successive

averages of n observations serially correlated at lag 1.

This is given by Box, et al. 1 as:

(18)

The term outside the square brackets is the familiar

formula for the variance of the difference in two n-point

sample means in the absence of correlation, which

follows directly from applying the general error

propagation formula, (1), to Ay = YB - _A. The term

inside the square brackets indicates how this variance

changes when ,ol is not 0. This is analogous to equation

7, which describes the variance of a single n-point

sample under lag-1 autocorrelation.

For the cases examined here, where n is 10 and ,ol

is +0.4 and -0.4, the corresponding numerical values of

the bracketed term are 1.68 and 0.32, respectively. The

square roots of these terms, which indicate roughly**

how much the widths of the distributions of measure

t-statistics change due to non-zero ,ol, are 1.30 and 0.57,

respectively. Under the random sampling hypothesis,

the critical t-statistic for an 18 df two sample t test at a

significance of 0.05 is 2.101. If we assume this

reference t-statistic while the width of the measured t

distribution increases by 30% due to positive

correlation, the area under this distribution to the right

of the reference t-statistic will increase. This represents

half of the percentage of erroneous rejections there will

be of the null hypothesis (the other half coming from

negative t-values less than -2.101). This is why

positive correlation increases the number of erroneous

rejections of H0. Likewise, when negative correlation

reduces the width of the measured t distribution to 57%

** Equation 18 assumes a known variance ("infinite" df)
while the reference distribution used in this

computational experiment was based on variance

estimates with 18 degrees of freedom. In the former

case the reference distribution is normal, while in the

latter it is an 18-df t distribution. The t-distribution is

somewhat broader than the normal so the influence of

correlation is somewhat greater than equation 18

suggests, but for 18 df this difference is sufficiently

small that we neglect it.
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Figure 18. Correlated lift coefficient errors. Plots of ei versus ei-1 for samples with lag-1 autocorrelation

coefficient [?1 = -0.4, drawn from three population distributions.

of the non-correlated case, this reduces the area under

that distribution outside a fixed reference interval

centered on the mean, causing a reduction in the

number of H0 rejections due to random error. Figure 22

illustrates schematically how correlation-induced

contractions and expansions in the width of measured t

distributions can change the risk of inference error
when the reference t-statistic assumes uncorrelated

observations.

Negative correlation results in a kind of self-

correction in the data, in which negative errors tend to

be followed by positive (or less negative) errors, and

Uniform ErrorDi_ribution
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Figure 19. Impact of set-point order on inference

error probability for different levels of correlation.

Uniform error distribution.

positive errors tend to be followed by negative (or less

positive) errors. The tendency for random errors to

cancel is thus enhanced somewhat, which reduces the

width of the measured t-distribution. This is why

negative correlation tends to reduce the number of

erroneous rejections of the null hypothesis.

Unfortunately, this same process tends to produce

"false alarms" at a higher rate, in which differences in

sample means too small to be of concern are flagged as

significant. For example, an experiment to compare the

lift of two wing designs might result in an erroneous

conclusion that there is some significant difference in

performance when in fact neither wing is genuinely

superior to the other. This could lead to unjustified

production decisions or other undesirable

consequences.

With positive correlation, positive errors tend to be

followed by positive (or less negative) errors, and

negative errors tend to be followed by negative (or less

positive) errors. There is thus a reduced tendency for
random errors to cancel that broadens the distribution of

measured t-statistics, resulting in more erroneous

rejections as we have seen. This tends to reduce the

sensitivity of experiments, making it more difficult to

detect subtle effects that may be important. For

example, with positive correlation an experiment to

compare the lift of two wing designs might result in an

erroneous conclusion that there is no significant
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Figure 20. Impact of set-point order on inference

error probability for different levels of correlation.

Chi-Squared error distribution

difference in performance when in fact one wing

actually is genuinely superior to the other. This could

result in a lost opportunity to exploit the benefits of the

superior wing.

In all the cases we examined, whether there was

positive correlation, negative correlation, or no

correlation at all, and whether the errors were drawn

from a normal distribution, a uniform distribution, or a

skewed distribution, randomizing the set-point order

produced the general levels of inference error risk that

one would anticipate if the random sampling hypothesis

were valid. Only in the case of completely independent
observations does a failure to randomize result in

expected inference error risk levels. Positive

correlation is more common in wind turmel testing than

negative correlation, meaning that Type I inference

errors (erroneous rejection of the null hypothesis) are

more common than Type II errors (erroneous rejection

of the alternative hypothesis). In the context of the

comparative wing performance example, correlation

would make it more likely in a real experiment to miss

a significant improvement in lift than to claim some

improvement when none existed, simply because

correlations are more likely to be positive than

negative.

The results of the above computational

experiments demonstrate that even mild correlation

among observations in a sample of data can adversely

impact the results of standard statistical tests that

assume the random sampling hypothesis. They also

suggest that reliable inference error risk predictions are

not influenced so much by the distributional details of

the population from which the errors are drawn as by

the independence of the individual observations in the

sample. In particular, if the observations are not

independent, then larger samples (more data) that might

produce a better approximation to a normal distribution

of sample means because of the Central Limit Theorem,

will do nothing to ensure reliably predictable inference

Figure 21. Impact of set-point order on inference

error probability for different levels of correlation:

Average number of erroneous H0 rejections for

errors drawn from normal, uniform, and skewed

distributions.

error risk levels. Randomization has been shown to

stabilize the inference error risk about predictable levels

regardless of the population from which the errors are

drawn, and regardless of correlation among

observations. This is one more way that randomization

defends against the adverse effects of systematic

variation in a data sample, and another reason that

randomization is a recommended standard operating

procedure in experimental disciplines that focus upon

inference (knowledge) rather than simple high-volume
data collection.

BlockinR: A Defense ARainst Between-Sample

Systematic Variation

We saw in the last section that significant

enhancements in quality can be achieved by permuting
the order in which observations are recorded in an

experiment. Specifically, we saw that randomizing the

order that independent variable levels are set can reduce

the unexplained variance in an experiment and also

1
Measured t ,Statistics

I--p O -- --p +0.4 .... p 04 I

Figure 22. Impact of correlation on inference

error risk.
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Table IV: Test matrix to support a second-order CL response surface experiment,

independent variables in physical and coded units

iiSET POINTi iiCODED ii CL ELAPSED
BLOCK ALPHA BETA BLOCK ALPHA BETA TIME, Min

1 12 0 -1 0 0 0.5379 0.00

1 10 4 -1 -1 1 0.4503 1.10

1 12 0 -1 0 0 0.5374 1.36

1 14 4 -1 1 1 0.6337 2.00

1 12 0 -1 0 0 0.5399 3.16

1 14 -4 -1 1 -1 0.6293 3.40

1 12 0 -1 0 0 0.5390 4.96

1 10 -4 -1 -1 -1 0.4462 7.14

2 9.17 0 1 -1.414 0 0.4102 8.21

2 12 0 1 0 0 0.5377 8.89

2 12 -5.66 1 0 -1.414 0.5439 10.02

2 12 0 1 0 0 0.5396 11.16

2 12 5.66 1 0 1.414 0.5491 12.29

2 12 0 1 0 0 0.5393 13.82

2 14.83 0 1 1.414 0 0.6658 14.11

2 12 0 1 0 0 0.5407 15.28

minimize the probability of false alarms and missed

effects. We will now examine another way to select the

order of observations to further improve the quality of

experiment results. We call this technique blocking.

A recent wind tunnel experiment at NASA Langley

Research Center was designed to characterize the forces

and moments on a generic winged body over a

relatively narrow range of angles of attack and angles

of sideslip. Table IV presents the test matrix in run

order, with independent variables listed in both physical

and coded units, per equation 13. Lift coefficients

computed from measurements at each set-point are

included in the table, as well as the elapsed time for

each point relative to the start of the sample.

The set-point levels are not uniformly randomized

in this design. Rather, they are clustered into two

"blocks" of points, with points randomized within each

block. It is this blocking scheme that we will examine
in some detail in this section.

The design in Table IV is a very efficient design

for fitting second-order response models called a

Central Composite Design (CCD) or Box-Wilson

design, after its developers 11. In this experiment, the

ranges of the independent variables were sufficiently

restricted that response function terms of order three

and higher were believed to be negligible, which is a

good scenario in which to apply the CCD. Figure 23 is

a general schematic representation of a two-variable

CCD, in which the set points are plotted as coded units

in what is called the inference space or design space of

the experiment. This space is simply a Cartesian

coordinate system in which each axis represents one of

the independent variables, so that every point in the

space corresponds to a unique combination of the

independent variables. The eight points near the center

are in fact collocated replicates at (0,0), drawn in the

figure to show how many center points there are. The

filled circles are points acquired in Block 1 and the stars

are points acquired in Block 2. Note that half the center

points are acquired in one block and half in the other.

All points in Block 1 were run before any points in

Block 2.

I I0 +1 +__

B

Figure 23. Orthogonally blocked Central Composite

(Box-Wilson) Design in two variables with four

center points per block.
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Table V. Regression coefficients for full, unblocked,
second-order CL response model.

Coefficient
Factor Estimate

Intercept
A-AoA

B-Sideslip
A z

Bz

AB

DF
5.389E-01 1 5.48E-04

9.099E-02 1 5.48E-04
1.967E-03 1 5.48E-04

-1.051 E-03 1 5.48E-04
3.188E-03 1 5.48E-04

6.350E-05 1 7.75E-04

Standard t for HO

Error Coeff=O Prob> Itl

165.97
3.59

-1.92
5.81

0.082

< 0.0001
0.005

0.0842
0.0002

0.9363

While this paper focuses on the quality aspects of
formal experimental execution tactics, we note in
passing that designs such as the CCD also enhance
productivity. Only 16 points are required in this design

to cover the whole range of both alpha and beta. An
OFAT design would typically involve multiple alpha
polars, each at a different beta set-point, with each
individual polar featuring approximately as many points
as the entire 16-point CCD design requires. This much
additional data adds to the both the expense and the
cycle time of a wind tunnel experiment, reducing
productivity. To facilitate the acquisition of so many
data points in as little time as possible, OFAT
practitioners are forced to set the angles of attack
sequentially to maximize data acquisition rate,
guaranteeing by this ordering the greatest possible
adverse impact of within-polar systematic variation on
the alpha dependence. The sideslip angles are typically
set in monotonically increasing order as well, likewise
guaranteeing the greatest possible adverse impact of
between-polar systematic variation on the beta
dependence. Thus, OFAT methods often manage to
minimize both productivity and quality simultaneously,
an accomplishment all the more noteworthy for the
substantial expense required to achieve it.

We will begin with an analysis of the data in Table
IV that does not take blocking into account. We fit the

response data to a full second order polynomial in the
two coded variables as in equation 14, generating
estimates for the coefficients of this model and also the

uncertainties in estimating them. We use standard

regression methods outlined in an earlier discussion of
the impact of systematic variation on response surface
estimates. Table V is a part of a computer-generated
output from such a regression analysis. For each of the
six terms or "factors" in the model, a numerical
estimate is made of both the coefficient and the "one-

sigma" uncertainty in estimating it (its "standard
error"). The intercept factor in this table is the bo term
in equation 14, and factors A and B in the table
correspond to variables xl and x2 in equation 14, which
are the angles of attack and sideslip, respectively, in
this model.

The column in Table V labeled "t for

H0 Coeff = 0", contains measured t-statistics referenced

to a null hypothesis that the true value of the coefficient
is zero. These are computed by dividing the coefficient
estimate by the standard error. The t-statistics thus
represent how far the coefficient is from zero in
standard deviations. Large t-statistics imply that the
estimated coefficients are large enough relative to the
uncertainty in estimating them that they are unlikely to
appear non-zero only due to experimental error, and are
therefore probably real. The right-most column in

Table VI. Regression coefficients for reduced, unblocked CL response model.

Coefficient

Factor Estimate

Intercept
A -AoA

B-Sideslip
A z
Bz

AB

Standard

DF Error
5.389E-01 1 5.48E-04
9.099E-02 1 5.48E-04

1.967E-03 1 5.48E-04
-1.051E-03 1 5.48E-04
3.188E-03 1 5.48E-04

6.350E-05 1 7.75E-04

t for H0

Coeff=0 Prob> Itl

165197 < 010001

3.59 0.005
-1.92 0.0842
5.81 0.0002

0.082 0.9363
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TableV contains"p-statistics"thatrepresentthe
probabilitythata coefficientas largeasthe one
estimatedcouldoccurentirelyduetochancevariations
inthedataifthetruevalueofthecoefficientiszero.

Coefficientswith larget-statisticshavesmall
p-statistics.Forexample,thefirst-orderAoAtermin
thismodelfeaturesa t-statisticof morethan165,
indicatingthatthiscoefficientestimateismorethan165
standarddeviationsto therightof zero. Assuming
randomsampling,theprobabilitythatsucha result
couldbedueto ordinarychancevariationsunder the

null hypothesis is infinitesimal, or as the computer
output coyly describes it, "< 0.0001". The miniscule
probability that the linear AoA term is zero (or
conversely, the substantial size of the t-statistic for this
term in the model) confirms what subject matter
specialists already know: that lift has a strong first-

order dependence on angle of attack.
By contrast, note that the AB interaction term has a

very small t-statistic. The size of the coefficient is
much smaller than the standard error in estimating it
(only about 8.2% of the standard error), and there is
more than a 93% chance that such a small value could

result from experimental error if the coefficient was
actually zero. We are therefore unable to conclude
from the data that alpha and beta interact over the
ranges tested. That is, we cannot say over this range of
variables that a given change in alpha will produce a
different change in lift at one beta than another.

The quadratic AoA term also looks quite small. It
is less than 2 standard deviations away from 0 so we are
unable to distinguish it from zero with at least 95%
confidence. We therefore drop this term from the
model also, concluding that at least over the range of
alpha examined, we are unable to detect curvature with
sufficiently high confidence to retain a term for it.
Table VI displays the regression coefficients for a
reduced CL response model. A reduced model features
only the terms that we can infer are non-zero with
sufficient confidence to satisfy our inference error risk
tolerance. We declare this risk level in advance, and

use it as a criterion for accepting or rejecting candidate

model terms

The reduced model now features only four terms,
but each one is highly likely to be non-zero. We
therefore have some reason to believe that this model

may adequately represent the data. The reduced model
is:

y = bo +b]x 1 +b2x 2 +b22xz: (19)

Before we accept equation 19 as an adequate
representation of the data, numerous additional tests
would typically be applied. A full discussion of all
model adequacy tests that are normally applied in a
response surface experiment such as this is well beyond
the scope of this paper. We will examine one, however,
called a lack of fit test, to highlight the role that
blocking can play in improving the fit.

The lack of fit test begins by computing the total
variance of the data sample in the usual way. The sum
of squared deviations of each observation from the
sample mean is divided by the minimum degrees of
freedom required to compute the sum of squares - n-1
for an n-point sample. The total variance is then
partitioned into explained and unexplained components
using analysis of variance (ANOVA) methods. We
would like all of the variance to be explained by the
model, but in reality there is always a component of
unexplained variance that is responsible for the
uncertainty that inevitably attaches to response
predictions we make with the model.

To assess the quality of the model, we are
interested in further examining the unexplained
variance. The unexplained variance is non-zero
because even a reasonably good model will not go
precisely through each point in the data sample. There
will generally be some residual for each point.
However, a non-zero residual can be explained in two
ways: It is possible that the model is correct and the
residual is due simply to random variations in the data.
It is also possible that the data point is correct and the
model is simply wrong at that point. That is, the point

Table VII. ANOVA table for reduced, unblocked CL response model.

Sum of Mean F

Source

Model

Residual

Lack of Fit

Pure Error

Cor Total

Squares DF Square
6.63 E-02 3 2.21E-02

3.29E-05 12 2.74E-06

2.33E-05 5 4.65E-06

9.63E-06 7 1.38E-06

6.64E-02 15

Value Prob > F

8066.23 < 0.0001

3.38 0.072
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may be in the wrong place or the response surface may

be in the wrong place; it is difficult to say which is true

by inspection alone• In practice, both explanations

usually apply, but in different degrees• It is important

to decide which of these factors is driving the

unexplained variance because the choice of remedial

action is different for one case than the other• If the

unexplained variance is due primarily to random

variations in the data, additional replicates can be

acquired to average out the random variation• We say

in such a case that the unexplained variance is due to

pure error• If the unexplained variance is due primarily

to an inadequate model, however, we would have to re-
examine the model to see if additional terms or other

changes might improve it. We say in such a case that

the model suffers from lack offit.

We determine whether we have a lack of fit

problem or a pure error problem by further partitioning

the unexplained component of the total variance into

pure error and lack of fit components, again using

ANOVA techniques that are beyond the scope of this

paper but which are readily available in standard

references on the subject 12-15. The analysis of variance

culminates in an ANOVA table describing the various

components of the total variance• Table VII is a

computer-generated ANOVA table for the reduced lift

model described by equation 19 and Table VI.
The first column in the ANOVA table identifies

various sources of variance• A sum of squares is

computed for each component, as is the corresponding

number of degrees of freedom• The "Mean Square"

column is the ratio of the sum of squares and degrees of

freedom ("DF") for each source of variance• These are

the actual variance components, which we examine in

the following way: The first row in the table, labeled

"Model", describes the component of the total variance

that can be explained by the candidate model• The

second row corresponds to the total unexplained or

residual variance - that portion due to changes that the

researcher cannot attribute to any known source. We

first examine the ratio of explained to unexplained

variance, which is listed in the fifth column, labeled

"F Value". The explained volume is over 8000 times

larger than the unexplained variance, which gives us

confidence that we are not simply fitting noise. That is,

changes in the independent variables are forecasted by

our model to produce changes that are substantially

larger than experimental error. The model F-statistic is

therefore a measure of signal to noise ratio. The

p-statistic in the last column is the same as we

encountered earlier. It represents the probability that an

F-statistic his large could be due simply to chance. The

fact that this is so low for the variance explained by the

model suggests that we are very likely to have an

adequate signal to noise ratio.

....

Figure 24. Residual time history of unblocked,

reduced CL response model, showing a slight

between-block shift in sample means•

The residual or unexplained variance is further

partitioned into pure error and lack of fit components

by the ANOVA process, as indicated in Table VII.

Again we construct an F-statistic by taking the ratio of

two variance components -- the lack of fit and pure

error components of the residual variance in this case.
We see from Table VII that this ratio is 3.38 for our

model. This says that the variance attributable to lack

of fit is over 3 times as large as the variance due to pure

error, a troubling sign that the model is not an

equivalent representation of the data, which is the

objective of our modeling efforts.

Figure 24 provides a clue as to why the model may

be suffering from lack of fit. This is a plot of

normalized residuals in run order, which is a surrogate

for time. The first eight points were acquired as a block

and so were the second eight points. Recall that the set-

points were randomized within blocks, which accounts

for the fact that there is no particular pattern in the

residuals within each block. However, while the mean

of all of the residuals is zero (by definition of the

mean), it seems as if the mean of the first block is

slightly less than the mean of the second, suggesting

that some kind of time-varying systematic error is afoot

that is causing the block means to trend. (Note that had

we not randomized the set-point order, the best-fit

regression procedures would have incorporated this

unexplained systematic error into the regression

coefficients. We would have generated a "good fit" to

an erroneous model.) In short, figure 24 suggests that

our lack of fit may be due to "block effects" -
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Table VIII. ANOVA table for full blocked CL response model.

Coefficient

Factor Estimate

Intercept
Block 1

Block 2

A-AoA

B-Sideslip
A 2

B 2

AB

5.39E-01

-0.0008

0.0008

9.10E-02

1.97E-03

-1.05E-03

3.19E-03

6.35E-05

Standard t for H0

DF Error Coeff=0 Prob > Itl
1 4.47E-04

1 4.47E-04 203.76 < 0.0001

1 4.47E-04 4.40 0.002

1 4.47E-04 -2.35 0.043

1 4.47E-04 7.14 < 0.0001

1 6.31E-04 0.10 0.922

systematic between-block shifts in sample means -
which we will now remove.

To remove block effects, we augment the model in
equation 14 by adding a blocking variable, making the
response model a function now of three variables rather
than two. The model we now fit to the data is an

extension of equation 14, as follows:

y=b o +b]x] +b2x 2

+b12XlX2 +bllX_ +b22x_ +cz
(20)

The blocking variable, z, is assigned a value of -1
for one of the blocks and +1 for the other. The

assignment can be arbitrary, as long as it is consistent
throughout the analysis. Note that the coefficient of the
blocking variable represents an increment to the
intercept term, bo, quantifying how the mean level
changes from block to block. That is, since z takes on
only two discrete values, +1, equation 20 reduces to:

y = (bo +c)+blXl +b2x2

+b12XlX2 +bllX( +b22x_
(21)

We can therefore generate in effect two response

functions, one applying to each of the blocks. The
functions are identical except for the intercept term,
which is adjusted to reflect the different mean levels in
each block. Table VIII is the computer-generated
output of a regression analysis in which the model in
equation 20 that includes the additional blocking
variable was fit to the data of Table IV. (Note in Table
IV that the possible need of a blocking variable was
anticipated in the design of the experiment.)

Table VIII is similar to Table V, which presents the
results of the regression analysis for the unblocked
case, but there are both obvious and subtle differences.
The obvious difference is that Table VIII has

coefficients for the two blocks, which are equal in
magnitude and opposite in sign. These are the values

that the cz term in equation 20 assumes in each of the
blocks. They represent how much the response
function must be shifted in each block from a value of

bo that would split the difference between the two
blocks. In this case, the first block is about 8 counts

below the grand mean of all the data, and the second
block is about 8 counts above it. The block effect is

defined as the difference between these two levels,

which is about 16 counts. This is not very large in
absolute terms, but it is large enough to completely
consume a 10-count error budget, which is commonly

Table IX. Regression coefficients for reduced, blocked CL response model

Coefficient
Factor Estimate

Intercept
Block 1
Block 2

A-AoA

B-Sideslip
A 2

B 2

5.39E-01

-7.78E-04
7.78E-04

9.10 E-02
1.97E-03

-1.05E-03
3.19E-03

DF
1

1

Standard t for HO

Error Coeff=O Prob> Itl
4.24E-04

1 4.24E-04
1 4.24E-04

1 4.24E-04
1 4.24E-04

214.66
4.64

-2.48
7.52

< 0.0001
0.001

0.033
< 0.0001
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Relative Point Number (Titrte)

Figure 25. Residual time history of blocked, reduced

CL response model, showing no block effects.

specified in precision lift performance testing. Note

also that the pure error variance in Table VII is

1.38 x 10 -6. The square root of this, 0.0012, is the pure

error standard deviation. The fact that we have a

16-count block effect imposed upon chance variations

with a 12-count standard deviation helps explain why

the unblocked model failed to represent the data within

pure experimental error.
A more subtle but crucial difference between the

regression coefficients listed in Tables V and VIII is
that while the numerical values of the coefficients are

identical, the standard errors are much smaller for the

blocked case than the unblocked case. The t-statistics

are larger and the corresponding p-statistics are smaller.

That is, blocking reveals the same regression

coefficients, but permits them to be seen with greater

precision. One result in this specific case is that the

quadratic AoA term that could not be resolved before

blocking is now comfortably more than two of the new,

reduced standard deviations away from zero, permitting
us to assert with at least 95% confidence that curvature

in the AoA variable is real. Therefore, after the keener

insight afforded by blocking, we can confidently retain

the quadratic alpha term in the model, and infer that

there actually is curvature in alpha over the range of

angles of attack that we examined. We continue to

omit the interaction term from the model, however.

Table IX is a computer-generated regression

analysis table for the blocked, reduced model

(interaction term dropped). Comparing with the

unblocked reduced model of Table VI reveals that

blocking has produced a reduction of more than 27% in

the standard errors of the coefficients.

Figure 25 displays the residual time history of the

reduced, blocked model. Note that as before,

randomization has ensured that there are no within-

block trends in the residuals, suggesting that the within-

block errors are independent. Blocking has now

removed the systematic difference between the two

blocks that was apparent in figure 24.

Table X is the ANOVA table for the blocked,

reduced model. Compare this with the ANOVA table

for the corresponding unblocked case in Table VII.

Recall that is was the rather significant lack of fit in

Table VII that prompted a further analysis, which led to

the discovery of a block effect and motivated the

blocking analysis that removed it. The comparison of
Table VII with Table X reveals that the lack of fit

F-statistic that was 3.38 before blocking is now only

1.05. That is, before blocking the lack of fit component

of the unexplained variance was over three times as

large as the pure error component, but after blocking

they are comparable. Note that we can never expect to

produce a model with a lack of fit component that is

significantly smaller than the pure error component,

simply because the fit is limited by the quality of the

data. (The model cannot be made better than the data

that produced it without fitting the noise.) We can only

aspire to generate models that do not significantly

increase the unexplained variance beyond the pure error

component, which appears to be the situation in this

case only after blocking the data.

A comparison of Tables VII and X reveals that the

model F-statistic is much larger for the reduced,

blocked model than for the reduced, unblocked model

Table X. ANOVA table for reduced, blocked CL response model.

Source

Block

Model

Residual

Lack of Fit

Sum of Mean

Squares DF Square
9.66E-06 1 9.66E-06

6.63E-02 4 1.66E-02

1.44E-05 10 1.44E-06

5.91E-06 4 1.46E-06

F Value Prob > F

i i 54i 120 < 0.000i

1.05 0.456

Pure Error 8.47E-06 6 1.41 E-06

Cor Total 6.64E-02 15
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(11541versus8066).Thissuggeststhattherehasbeen
a significantincreasein the explainedvariance
attributableto blocking.Blockingdoesincreasethe
explainedvariance,in thatcomponentsof formerly
unexplainedvariancecannowbeexplainedasblock
effects.However,thereisacomplicatingfactorinthis
instance.Blockingpermittedus to includethe
quadraticalphaterm in the modelbecauseby
convertingsomuchunexplainedvarianceto variance
thatcouldbeexplainedbytheblockeffect,theresidual
unexplainedvariancewassufficientlyreducedthatthe
quadraticalphatermcouldbeclearlyresolvedwhereit
couldnotberesolvedbeforeblocking.Sopartof
increaseinexplainedvarianceisdueto theblocking
directly,butpartof it is alsobecauseweconverted
someoftheunexplainedvariancetoexplainedvariance
whenweaddedtheextratermin themodelthat
%xplains"curvatureeffectsinalpha.

To makea fair assessmentof how blocking
impactstheexplainedvariance,ablockedmodelwas
analyzedin whichthe quadraticalphatermwas
dropped.Thismadeit identicaltotheunblockedcase
withthesingleexceptionofblocking.DroppingtheA2
termreducedthemodelF-statisticfrom 11541to
10480,reflectingthelossof thequadraticalpha's
contributionto theexplainedvariance.Therelevant
comparison,however,isbetween10480forthecaseof
blockingand8066for themodelthatis identicalin
everyrespectexcept blocking. Note that the F statistic

is simply the ratio of the variance explained by the

model to the residual variance. Since now, except for

blocking, the two models are identical (they contain the

same independent variable terms), the ratio of

F-statistics is the ratio of equivalent residual variances.

In this case, that ratio is 8066/10480 = 0.77. The

residual variance goes as l/n, so to achieve an

equivalent increase in precision by conventional

replication alone would require an increase in data

volume (and associated cycle time) of a factor of

1/0.77 = 1.30. Blocking the data, which requires

essentially no additional resources beyond the workload

required to plan for it, has achieved in this case an

increase in precision that would have required 30%

more resources by conventional means.

We can also compare the blocked and unblocked

cases on the basis of uncertainty in the model

predictions. The uncertainty associated with

predictions made by any linear regression model

depends on the combination of independent variables

for which the prediction is made, but the average

variance across all points in the design space used to

generate the model has been shown (e.g., by Box and

Draper 12) to be independent of the details of the model

and equal simply to po_/n, where p is the number of

parameters in the model, n is the number of points used

to fit the data, and o_ is the variance in the response.

The square root of this is the average standard error

(_'one-sigma" uncertainty) associated with the model

predictions. If we use the residual mean square from

the ANOVA table as an unbiased estimator of the

response variance (justified under an assumption

of the random sampling hypothesis that

randomization assures), then the average standard

prediction error for the unblocked model is

_]4x(2.74x10-_)/16=0.00083. The blocked model

has 5 terms instead of 4, which tends to increase the

mean standard error of the prediction (because each

term in the model carries with it some uncertainty).

However, the residual mean square is less, because a

portion of the otherwise unexplained variance

attributable to alpha curvature effects is now converted

to a component of explained variance, and also

blocking has explained additional components of

variance that were formerly unexplained. The average

standard prediction error for the blocked model is

45x(1.44x10-_)/16 =0.00067. Blocking has reduced

the uncertainty in predictions from 8.3 counts to 6.7

counts, a 19% increase in precision that is obtained

essentially for free.

The standard error in prediction even before

blocking was relatively small in this case and it might

be argued that efforts to further improve precision by

blocking are unnecessary. First, it should be noted that

there is no way to forecast in advance how large the

block effects will be, so that blocking is a prudent

precaution against systematic errors in any case. In this

case the block effect was merely due to the influence of

some unknown source or sources of systematic

variation persisting for no more than about 15 minutes.

(See elapsed time values in Table IV.) The block

effects could easily be much greater if the blocks were

separated further in time, especially if there was some

identifiable change from block to block. For example,

the block effects might have been greater if a facility

shut-down and start-up had occurred between blocks

such as occurs overnight, or if the two blocks were

acquired by different shifts in a multi-shift tunnel

operation.

Secondly, whether block effects can be considered

negligible or not depends on the precision requirements

of the experiment. In this case, an unblocked prediction

standard error of 0.00083 has a _'two-sigma" value of

0.0016 to two significant figures. This is ample

precision to satisfy the requirements of many stability

and control studies, for example, where precision

requirements no more stringent than 0.005 in lift

coefficient are common. (Even so, it is the sum of

block effects plus all other error sources that must be

maintained below 0.005, so while block effects alone

may not be important in such a case, they could
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contributeto"thestrawthatbreaksthecamel'sback".)
In performancetestingwhereprecisionrequirements
areoften0.001,minimizingblockeffectsin this
examplewouldbemuchmoreimportant.

Againweemphasizethat systematicvariations
persistingoverperiodsasshortasfifteenminuteswere
sufficientinthiscase,drawnfromanactualwindtunnel
testthatwasnotatypical,to introduceerrorslarge
enoughto consumemuchof theerrorbudgetin
precisionwindtunnelperformancetesting.Thisiswhy
precautionssuchasrandomizationandblockingareso
importantin suchapplications,andwhyexperimental
resultsobtainedwithoutthesequalityassurancetactics
aresooftendifficultto reproducewithinthedesired
precisionfromtestto testwithina giventunnel,and
certainlyacrosstunnels.

Thereadermayprotestthatweunderstatedthe
standarderrorinpredictionsfortheblockedmodelin
thenumericalexampleweconsideredabove,because
wefailedtocounttheblockingvariableasoneof the
parametersinthemodel.Wedroppedthistermandits
associatedvariancecomponentfrom the model
altogetherbecausewearenotinterestedinpredicting
thelift coefficientforonespecificblockoftimeorthe
other.Rather,weareinterestedinanoverallestimate
of thelift coefficient.WethereforeuseDo as the

intercept term in equation 21 rather than either bo+c or

bo-c. The rationale for this is that we have no reason to

assume that one block is more representative of the

long-term mean state of the tunnel than the other, and

the average of the two is more likely to be a better

approximation than either extreme.

We noted earlier that the regression coefficients for

the blocked and unblocked models were identical, and

the only difference caused by blocking was to improve

the precision in estimating the coefficients. The

importance of this result is easy to overlook on first

read, and deserves to be highlighted. It means that even

in the presence of block effects (and independent of

how large those effects are, as it turns out), it is possible

to recover the precise model we would have obtained if

there had been absolutely no block effects in the data

whatsoever! Not only are the model predictions the

same but the actual coefficients are as well, meaning

that no matter how large the block effects are, they will

have no influence at all on our ability to predict

responses, nor on the insights we can achieve into the

underlying physics of the process. This is quite

remarkable, and of enormous practical significance

given the ubiquitous nature of block effects in real

experimental situations with stringent precision

requirements, as is common in performance wind

tunnel testing. There is a great potential for exploiting

blocking to minimize test-to-test and turmel-to-turmel

variation that is yet to be tapped by the experimental

aeronautics community.

To achieve these results requires that the blocking

be performed in a special way that makes the blocking

variable orthogonal to all other terms in the model.

This is because changes to orthogonal terms in a model

have no impact on the coefficients of other terms to

which they are orthogonal. In particular, setting the

coefficient of an orthogonal blocking variable to zero

(dropping it from the model) has no affect on the rest of

the terms in the model.

Orthogonal blocking in a second-order design such

as this one (an experiment designed to produce a

response model with no more than second order terms)

requires that two rather mild conditions be met. The

first is that the points within each block be themselves

orthogonal. This is achieved when the products of all

independent variables for each data point sum to zero.

Consulting the two columns of coded independent

variables in Table IV, it is clear that this condition is

met in both blocks for the Central Composite Design.

The second condition is that within each block, the sum

of squared distances of each point from the center of the

design space must be such that the ratio of these

quantities from block to block is the same as the ratio of

the number of points in each block. This condition is

met in a Central Composite Design by adjusting the

number of points in the center of the design and the

distance that each "star" point is from the center of the

design space in the second block. For a two-variable

CCD, assigning the same number of center points to

each block and setting the star points a distance from

the design center equal to the square root of two is one

way to ensure that the blocks identified in Table IV are

orthogonal. Geometrically, this places all points either

at the center of the design space or on a circle with its

origin at the center of the design space. See figure 23.

The reader may ask why blocking is necessary

when randomization has already been represented as an

effective defense against systematic variation. Why did

we not simply randomize the 16 points in Table IV,

rather than dividing them into two blocks and

randomizing within blocks?

One reason is that organizing the experiment as a

series of small, orthogonal blocks makes it convenient

to halt testing on block boundaries whenever it is

necessary to do so, secure in the knowledge than any

bias in response measurements that may materialize

across blocks can be eliminated. We therefore break

for lunch on a block boundary, schedule any tunnel

entries to occur on block boundaries, end daily

operations on a block boundary, and change shifts on

block boundaries. All within-test subsystem

calibrations are scheduled on block boundaries,

including periodic calibrations of the data system, all

wind-off zeros, all model inversions, and so on. Also,

if some unforeseen event causes an unscheduled

suspension of tunnel operations, we resume operations
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notatthelastdatapointinthetestmatrix,butatthelast
blockboundary.

Anotherreasonfor blockingin additionto
randomizingis thatwhilerandomizationensuresthe
independenceof observationsnecessaryto make
reliableinferencesandconvertshiddensystematic
errorsto visiblerandomerrorsthatcanbe readily
minimizedbyreplication,blockingactuallyeliminates

elements of the unexplained variance. That is,

randomization ensures the proper shape of

representations of cause-effect relationships between

system response changes and changes in the

independent variables (e.g., polars), while blocking

enhances the precision with which such relationships

are represented.

Finally, orthogonal blocking gives us a tool to

reveal the degree of systematic variation ongoing in our

experiment. This also enables us to quantify an

important component of bias errors that is generally

overlooked in wind tunnel testing. Because block

effects can be completely eliminated from our

characterizations of system response when the blocks

are orthogonal, there is no reason to fear them. This

liberates us to design our experiments to exploit block

effects by using them as _tracers" to quantify

systematic variation. Each block effect comprises an

additional degree of freedom that can be used to assess

the between-group variance that causes a (usually

ignored) component of bias error in a typical wind

tunnel test. This is the bias error due to relatively long

period variations in sample means that are caused by

the kinds of persisting systematic effects we have

discussed (temperature effects, instrumentation drift,

flow angularity changes, etc).

The strategy for quantifying systematic variation
with block effects is to randomize the order in which

blocks are executed, in addition to randomizing the

order that points are set within a block. For example,

the two blocks in Table IV were both acquired at one

Mach number, and typically there would be a similar

pair of blocks for each of a number of other Mach

numbers. It is only moderately more trouble to execute

a single block before changing to another Mach number

than to execute both blocks at once, so the experiment

could be organized as a series of, say, 10 blocks

(corresponding to five Mach numbers), with the order

that each block is executed determined at random.

Not only would this reduce the impact of

systematic variation on the quantification of Mach

effects, it would also ensure a relatively broad spectrum

of time intervals between blocks, enabling us to

quantify block effects over shorter periods and longer

periods as well. This could provide valuable insights

into the nature of these systematic effects and the

performance of the facility, perhaps indicating ways to

reduce the systematic variation. The information could

also provide a more quantitative basis for deciding how

often to perform such tasks as data system calibrations

and wind-off zeros. In any case, this strategy would

enable us to sample block effects over a relatively wide

range of conditions, providing a reasonable estimate of

the contribution that systematic variation makes to

within-test bias errors. These are the effects that result

in uncertainty in the absolute level of the intercept term

(e.g., bo in equation 14) that serves as the reference

level about which our response models predict changes

due to changes in the independent variables.

Results and Discussion

Most of the results of this paper have been

discussed as they were developed, but a few important

points are reemphasized here.

There is an emerging consensus within the

experimental aeronautics community that the objective

of wind tunnel testing is not simply to acquire data in

high volume, but to make specific, reliable inferences

about the system under study. That is, there is a

growing realization that wind tunnel tests are conducted

to learn new things, not simply to _get data".

The importance of increasing knowledge through

wind tunnel testing has never been disputed, of course.

Rather, it has been taken for granted that efforts to

maximize data collection rates are necessary to

facilitate the greatest number of reliable subsequent
inferences that can be drawn from the data. This has

resulted in a focus on speed, and the emergence of

various rate-related productivity metrics in ground

testing such as _polars per hour", _data points per test",

etc. The attitude during the test execution phase is

often that the most effective way to facilitate future

analyses is to acquire as much data as possible while
the means to do so are available.

Unfortunately, there is a tradeoff between speed

and quality that imparts hidden costs to this high-speed

data collection strategy. We do not refer to the

conventional _haste makes waste" argument that

continuous efforts to hurry a process can generate

careless errors, although that, too, is a consideration.

Rather, we mean that the standard practice of setting

monotonically increasing, sequential levels of the

independent variables to maximize data acquisition rate

incurs a quality penalty when subtle, persistent

systematic variations are in play. Systematic (non-

random) variations invalidate the random sampling

hypothesis for data samples acquired this way. The

random sampling hypothesis is a prerequisite for

making reliable scientific inferences, which is a

different activity altogether from simple high-volume

data collection.

Blocking and randomization are quality assurance

tactics that can augment the traditional quality
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enhancementprocedureofreplicationwhensystematic
variationsareinplay,byensuringthevalidityof the
randomsamplinghypothesis.Unfortunately,thecosts
ofrandomizationandblockingareoftenmoreapparent
duringexecutionthanaretheirbenefits.Weseldomsee
the subtlesystematicvariationsfrom whichgood
experimentaltechniquedefendsus. Thetemptationis
thereforealwaystheretoabandongoodtechniqueinthe
nameofexpediencyorconvenience.Thosewhoresist
suchtemptationsaremorelikelyto berewardedwith
reproducibleresultsthan thosewho succumb.
Researcherswhorecognizeandovertlydefendagainst
systematicvariationalsoenjoytheintangiblepeaceof
mindthatcomesfromknowingthattheycancontrolthe
qualityof theexperimentthroughitsdesign,without
dependingexclusivelyon thestateof thefacilityto
ensureaqualityresult.TheyknowthatwhileNatureis
probablyvisitingoneunknownsystematicvariationor
anotherontheexperimentatanygiventime,thedesign
oftheexperiment- likegoodanti-virussoftware- is
workinginthebackgroundtoprotectthem.

Concludin_ Remarks

This paper has considered the role of independent

observations in experimental data. It has shown that

results obtained when observations are not independent

can be unreliable. It has also cited experimental

evidence demonstrating that observations are often not

independent in wind tunnel testing. Certain effective

tactics have been described that were developed in

other research fields and are available in experimental

aeronautics to defend against the adverse effects of

conducting experimental research in environments for

which observations may not be independent. The

specific conclusions of this report are as follows:

1) When an effect that persists over time biases an

observation in one direction, the errors in

subsequent observations are more likely to be in

the same direction than the opposite direction.

Under these conditions, observations replicated
over a shorter time interval are more alike that

observations replicated over longer time periods.

2) Temperature effects, subtle changes in flow

angularity and wall effects, and drift in

instrumentation and data systems are all effects

that persistent over time in wind tunnel testing.

3) Wind tunnel practitioners implicitly acknowledge

the existence of persisting error sources through

standard operating procedures that include

frequent wind-off zeros, model inversions, and

data system calibrations.

4)

5)

6)

7)

8)

9)

lO)

11)

A large body of experimental evidence is in hand

to demonstrate that replicates acquired in wind

tunnels over shorter time periods are more alike

than replicates acquired over longer time periods,

and that the uncertainty introduced into

experimental results by ordinary random

variations in the data are small compared to the

uncertainty caused by systematic variations that

persist over time.

The results of at least one experiment designed to

quantify such effects suggests that systematic

variation can occur in 15% to 35% of the polars

acquired in a representative wind tunnel test.

When systematic variations are in play, sample

means and sample variances are not unbiased

estimators of population means and variances.

Systematic variations are generally more difficult

to detect than random variations unless a special

effort is made to do so. For example, regression
and other "best fit" methods tend to absorb

systematic errors into the estimates of model

coefficients, generating results that display only

the random error component of the total

unexplained variance, leaving the systematic

component undiscovered.

The bias in sample statistics caused by persisting

systematic variations in wind tunnel test
environments is a function of factors that do not

persist indefinitely. This can result in

experimental data that might not be subsequently

reproduced with the precision demanded of

modern wind tunnel testing.

Bias in sample variance caused by unrecognized

systematic variation has the effect of increasing

the risk of inference error by generating a

different set of circumstances than is assumed

when null hypotheses and corresponding

reference distributions are developed for formal

hypothesis testing under the assumption that all

observations are independent.

Systematic variations can rotate or disfigure wind

tunnel polars. They can also be responsible for

fine structure within a polar that is unrelated to

independent variable effects.

Systematic variation over extended periods can

result in block effects that cause polars acquired

in one block of time to be significantly displaced

from polars acquired in a later block of time.
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12)Systematicvariationssufficientto consume
significantfractions(and often significant
multiples)of theentireerrorbudgetcanoccur
overrelativelyshortperiodsof timein wind
tunneltests. It is not uncommonfor such
variationsto occuroverperiodsthatarenotlong
comparedtothetimeto acquireatypicalpolar,
forexample.

13)It is possibleto imposeindependenceon
experimentaldataevenin the presenceof
systematicvariationsthatpersistovertime,by
settingtheindependentvariablelevelsinrandom
order.Thistechnique,widelyusedinotherfields
besidesexperimentalaeronauticsformostof the
20th century,decouplesindependentvariable
effectsfromtheeffectsof changesoccurring
systematicallyovertime.

14)Randomizationensuresthatsamplestatisticsare
unbiasedestimatorsof their corresponding
populationparameters.

15)Randomizationensuresthatinferenceerrorrisk
canbereliablyassessedduringthedesignofan
experiment,by ensuringthat reference
distributionsof selectedteststatisticsfaithfully
representconditionsthatexistwhenproposednull
hypothesesaretrue. Theseconsiderationsare
expectedtoassumegreaterrelevanceasthefocus
of wind tunneltestingshiftsmoretoward
scientificinference,withlessrelianceuponsimple
highvolumedatacollection.

16)Randomizationhasbeenshownto stabilizethe
inferenceerrorrisk aboutpredictablelevels
regardlessofthepopulationfromwhichtheerrors
aredrawn,andregardlessof correlationamong
observations.

17)Thereisaninherentconflictbetweenspeedand
qualityinwindtunneltesting,inthattestmatrices
designedtomaximizedataacquisitionrateseldom
coincidewiththosethataredesignedtomaximize
thequalityofexperimentalresults.

18)Theultimateintentofhigh-volumedatacollection
is tominimizetheriskoffinishinganexperiment
with insufficientinformationto adequately
characterizethesystemunderstudy.Fortunately,
it ispossibletodriveinferenceerrorprobabilities
wellbelowtypicallyacceptedlevelsbyacquiring
significantlyfewerdatapointsthancommonhigh-
volumedatacollectionstrategiesgenerate.This
impliesthatit isgenerallypossibletodesigntest
matricesthatmaximizeresearchqualitywhilestill

19)

20)

21)

22)

23)

24)

acquiringampledatato drivetheprobabilityof
inferenceerrorsacceptablylow.

Blockinganoverallwindtunneltestmatrixinto
particularclustersofindependentvariablesettings
canfacilitateasubsequentanalysisofthedatathat
enablessubstantialportionsof theunexplained
varianceattributableto unknownsystematic
variation("blockeffects")tobeeliminatedfrom
theexperimentalresults.

Blockingiscommonlyusedinotherexperimental
researchfieldsto enhanceprecisiontoa degree
thatwouldotherwiserequiresignificantlymore
datatoachievethroughconventionalreplication.
Blockingthereforehasthepotentialtoameliorate
theadverseeffectsondatavolumeof designing
testmatricesto maximizeresearchqualityrather
thandatacollectionrate.

It is possibleto useblockeffectsestimatesas
"tracers",to characterizetheoveralldegreeof
systematicvariationinawindtunneltest.This
informationcanhelpfacilitypersonnelidentify
possiblesourcesof systematicvariationandcan
alsoquantitativelyinformdecisionsabouthow
oftenit is necessaryto imposesuchcommon
defensesagainstsystematicvariationaswindoff
zeros, model inversions,and subsystem
calibrations.

Randomizationandblockingaretacticaldefenses
againstsystematicvariationthathavethesame
potentialforguaranteeingqualityenhancements
in experimentalaeronauticsastheyhavebeen
providing in other experimentalresearch
disciplinessincetheir introductionby Ronald
Fisherover80yearsago.

Tacticaldefensesagainstsystematicvariation
wouldbeusefulin anycase,butwill become
increasinglyimportantasanevolvingconsensus
emergesaboutthe objectiveof experimental
aeronautics.Thatconsensusisthatexperimental
aeronauticsis conductedto acquireknowledge
andinsight,andnotsimplyto "getdata"in as
greatavolumeasresourceslimitationspermit.

Theapproachto windtunneltestingchanges
dramaticallywhenone recognizesthat the
objectiveis to maximizethevolumeandquality
of scientificinferences,ratherthanthevolume
andqualityofindividualdatapoints.Tacticssuch
assequentialsettingsof independentvariables,
whichcanachievehighdatavolumeat the
expenseof reliableinsight,areexpectedto fall
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increasinglyinto disfavorby experimentalists
sophisticatedenoughtofullyappreciateboththe
importanceof independentobservationsin
scientificresearch,andthelimiteddatavolume
often necessaryto ensureacceptablysmall
inferenceerrorrisk.

Appendix

Impact of Statistical Dependence on the Utility of

Sample Statistics as Reliable Estimators of

Population Parameters

We depend upon the estimates we make of such

statistics as the mean and standard deviation of

relatively small data samples for information about the

larger populations that interest us, but which are simply

too large to quantify directly, given realistic resource

constraints. In this appendix, we examine the

expectation values of the sample mean and sample
variance under conditions for which the random

sampling hypothesis does not hold. In such

circumstances, some degree of correlation exists among

individual observations in the sample and they cannot

be said to be statistically independent. This can occur

when the unexplained variance in a set of data contains

a systematic component superimposed upon the

ubiquitous random errors that are well known to

characterize any real data set. Systematic effects are in

play when conditions are such that observations made

over a short interval are more like each other than they
are like observations made at some later time. This can

be due to thermal effects that persist over time, or drift

in the instrumentation and data system, or any of a large
number of other unknown and unknowable sources.

Because this condition in which short-term variance is

smaller than long-term variance is not rare in wind

tunnel testing, it behooves us to examine more closely

how it affects our use of sample statistics to estimate

population parameters.

Sample Mean.

Consider first the sample mean, _. If systematic

variation is in play while the data sample is acquired,
the ith observation will consist of the sum of the

population mean, /l, the usual random component of

unexplained variance, ei, plus a systematic component

of unexplained variance, b i. That is, Yi =/l + e i + bi.

Let E{x} represents the expectation value of x for any

X.

Then

+hi)
E : E - .

/7

(A-l)

=IE /.t+ e i + bi

rl L i=l i=l i=l

" " Li=l J

" L_=, J

(A-2)

(A-3)

The expectation value for the component of
random error associated with the i th observation in a

sample, ei, is 0 (first summation term in A-3). The

expectation value for the component of systematic error

associated with the i th observation in a sample, b_, we

will call fl (second summation term in A-3). The value

of fl will depend on the details of the systematic

variation but it will not be zero in general. Electronic

engineers will recognize fl as a kind of "rectification

error". It represents a component of unexplained

variance that is not completely cancelled out by

replication in the same way as random errors because it

is systematic - more akin to a bias error than a random

error. Therefore we have:

E{_}:/t+o+l l_fll:/t+l(nfl) (A-4)
"Li=l J

or

[E{15}: ,u + fl] (A-5)
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If bycoincidencethesystematicvariationexhibits
atimehistoryduringthesampleintelvalthatcauses
earlycontributionsbeexactlycanceledbylaterones,
say,thenit is possiblefor /3 to be zero even in the

presence of systematic error. However, from equation

A-5 we see that the expectation value of the sample

mean can only be relied upon to be an unbiased

estimator of the population mean, At, when there is no

systematic component of the unexplained variance.

Sample Variance.

Consider now the impact of systematic error on the

expectation value of the sample variance, s 2, where we

follow the common convention by using Arabic

characters to refer to sample statistics and Greek

characters to refer to population parameters. We begin

with the mechanical formula for sample variance:

E i=1

(yi-;)2

n-1

)
1 -2

= E Yi-Y (A-6)

Here we use SS to denote the sum of squared

deviations from the sample mean:

;)2E{ss}=E y,-
.=

--2 --

=E y + y -2y y_

i=1

=E yT+.y2_z.y2

(A-7)

or

(A-8)

We will consider each term on the right of equation

A-8 in turn. We begin with the summation term, noting

as before that the i th obselvation, Y;, consists of the

population mean, At, plus the i th components of random

and systematic error, e; and b; respectively:

E y =E +ei+bi 2 (A-9)

or

At2 + e_

i=1

E y = E, + b_ + 2At e i

t i=1 J i=1 i=l

n n

+ 2AtZbi + 2Z(eibi'
i=1 i=l

(A-10)

The first term on the right of equation A-10 is just

nLd, since At - the population mean - is a constant. The

second term is a sum of squared random deviations. In

the limit of large n, this is just no _, from the definition

of population variance as a sum of squared random

deviations divided by n. So the second term is just n

times the random component of the unexplained

variance. Similarly, the third term is n@, or n times

the systematic component of the unexplained variance.

The fourth term is zero, since all random variations

must sum to zero by definition of the mean. In this

case, the random variations that occur at a particular

point in time are not generally distributed about the true

population mean. Instead, they are distributed about a

value that is displaced from the true mean by the value

of the systematic error at that time. In other words, the

systematic variation acts like a time-varying bias error.

The fifth term is also zero, again because the mean

has associated with it a constraint that all residuals sum

to zero. In this case, the sample mean is biased from

the true mean by an amount that causes the sum of the

systematic residuals to sum exactly to zero.

The last term on the right of equation A-10 features

the sum of the products of two deviations, one random

and one systematic. In the limit of large n, the

covariance between two variables, z; and z2 is defined

as the mean of the product ofz 1 - gl and z 2 - g2, or:

n

Cov(zl ' z2) _ i=1
n

Therefore the last term on the right of A-10 is just
n times the covariance between the random and

systematic error components of the unexplained
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variance.It isameasureofthedegree,if any,towhich
therandomandsystematicerrorsinfluenceeachother.

It is customaryto normalizethecovarianceby
dividingit bytheproductof theassociatedstandard
deviations,generatinga dimensionlesscorrelation
coefficient,p, that ranges between +1. For our case:

Cov(e, fl)
Pe,_ - --

GG_

where the unsubscripted 0- represents the standard

deviation of the random component of the unexplained

variance and 0-/_represents the standard deviation of the

systematic component of the unexplained variance with

respect to the population mean, ft. A positive
correlation coefficient would indicate that an increase

in systematic error tends to be accompanied by a

corresponding increase in random error. Likewise, if an

increase in systematic error tends to be accompanied by

a decrease in random error, the correlation coefficient is

negative. It is zero if the systematic and random

components of the unexplained variance are

independent of each other.

Therefore, for the last term on the right of equation
A- 10 we have:

E 2 eib i =2nxCov(e, fl)

= 2npe,fl0-0- _

(A-11)

We can combine all of this into a rewriting of

equation A-10 as follows:

E y_ =n/_ 2+ha 2 +n@

+ 0 + 0 + 2npe:GG _

(A-12)

or

E y =n 2+0-2

+ n(0-_ + 2pe,fl0-0-fl ]

(A-13)

This is the first term on the right of equation A-8.

We will now consider the second term, ny 2. From the

definition of a mean, we have:

;7

n::Zy-,
i=1

(A-14)

Here, Yi is the i th sample mean in a distribution of

sample means, rather than the ith individual point in a

sample. We will let e: represent the deviation of the i th

point from the population mean, assuming systematic

errors are present. That is, e: includes whatever effect

systematic errors have on the distribution of sample

means. Then:

;7 ;7

n::Ey :E +e;)
i=l i=l

;7 ;7 ;7

i=l i=l i=l

(A-15)

As in earlier derivations, the first term is nLd (Ld is

a constant) and the second is 0 (from definition of the

mean). The third term is a sum of squared deviations,

which we recognize as the product of n and the

corresponding variance, by definition of the variance as

the sum of squared deviations divided by n. We will

call this variance 0-'2,where the prime indicates that

this is the variance in a distribution of sample means

that has been affected in some way by the presence of

systematic error in the samples, and not just random

error. That is, this variance will be something like

equation 7 in the main text, which described the special

case of a lag-1 autocorrelation among the observations

in a sample, except that in this case no special

restrictions are placed on the nature of the correlation

(i.e., it is not constrained to be simply first-order or

lag-l). We will represent this variance in the presence

of systematic error as follows:

0 -2

0-,2 : __ [1+ f(p)_ (A-16)
n

where tip) is defined for this representation as a

function of the correlation that exists among

observations in a sample when systematic variation is

present, and is such thatf(p) 0 when p 0. In that case

the variance in the distribution of sample means reverts

back to the familiar form we derived in the main text in

equation 4.
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Wehave,then:

ny2=n,//2+0+nO-'2
=n. + f(p)]

(A-17)

We now insert equations A-17 and A-13 into

equation A-8:

E{SS}=n 2+0-2+0-}+
-{haa+ aIl+J(./l} (A-18)

or, after gathering terms:

E{SS} = o-2[n - 1- f(p)]
(A-19)

We insert equation A19 into equation A-6:

+ (__ 1/(°-} + 2Pe,/_ °-°-/_

(A-20)

Equation A-20 represents the expectation value of

the sample variance when observations within the

sample are correlated due to the kinds of systematic

variation that can occur when the random sampling

hypothesis does not hold. This is a very ugly function

of the systematic error, and certainly the condition upon

which we depend when we use sample statistics to

estimate population parameters; namely, that E[s 2} 02,

does not hold in this case. However, if the random

sampling hypothesis is valid, then the second term on

the right of A-20 vanishes because all the terms related

to systematic error are then zero, and the portion of the

first term on the right within braces goes to one because

tip) also goes to zero. The result is:

E{s2}= 0-2 (A-21)

That is, the expectation value of the sample

variance is in fact the population variance as we

require, but only in the absence of systematic variation

within the sample.
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